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Variance of a Mean

o Let Zy,...,Z, be independent r.v's with mean u and variance o2.
@ Suppose we want to estimate L.
@ We could use any single Z; to estimate p.
@ Variance of estimate would be o2.
o Let's consider the average of the Z;'s.
@ Average has the same expected value but smaller variance:
1 ¢ 1 ¢ 02
E[nZZi =u Var EZZ, :7
i=1 i=1

o Can we apply this to reduce variance of prediction models?
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Review

Averaging Independent Prediction Functions

Suppose we have B independent training sets.
Let f1(x), A(x),..., fg(x) be the prediction models for each set.

Define the average prediction function as:

~

1 &
hgb) =5 Y hx).
b=1

The average prediction function has lower variance than an individual
prediction function.

But in practice we don't have B independent training sets...

Instead, we can use the bootstrap....
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Variability of an Estimator

Suppose we have a random sample Xi,..., X,.

Compute some function of the data, such as

b=a¢(X,.... X))

We want to put error bars on i, so we need to estimate Var({1).
Ideal scenario:

o Attain B samples of size n.
o Compute fiy,...,[ig.
e The sample variance of {i,...,[ig estimates Var({1)

@ Again, we don't have B samples. Only 1.
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The Bootstrap Sample

Definition
A bootstrap sample from D ={Xi,..., X,} is a sample of size n drawn
with replacement from D.

@ In a bootstrap sample, some elements of D

o will show up multiple times,
e some won't show up at all.

@ Each X; has a probability (1—1/n)" of not being selected.

@ Recall from analysis that for large n,

1\" 1
(1— > ~ — ~ .368.
n e

@ So we expect 763.2% of elements of D will show up at least once.
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The Bootstrap Sample

Obs | X Y
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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The Bootstrap Method

Definition
A bootstrap method is when you simulate having B independent samples
by taking B bootstrap samples from the sample D.

o Given original data D, compute B bootstrap samples D, ..., D5B.

@ For each bootstrap sample, compute some function

&(DY),...,$(D%)

@ Work with these values as though D ... DB were independent.

@ Amazing fact: Things usually come out very close to what we'd get
with independent samples.
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The Bootstrap

Independent vs Bootstrap Samples

@ Original sample size n =100 (simulated data)
@ & is a complicated function of the data.
o Compare values of & on

e 1000 independent samples of size 100, vs
e 1000 bootstrap samples of size 100
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Bagging

@ Suppose we had B independent training sets.
o Let fi(x), %(x),...,fg(x) be the prediction models from each set.
@ Define the average prediction function as:

2 1

favg(X)ZE fb(X)-

Mo

i
L

@ But we don't have B independent training sets.
e Bagging is when we use B bootstrap samples as training sets.
@ Bagging estimator given as

B
"*
fbag Z b

b:

where fb* is trained on the b'th bootstrap sample.
e Bagging proposed by Leo Breiman (1996).
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Out-of-Bag Error Estimation

Each bagged predictor is trained on about 63% of the data.

Remaining 37% are called out-of-bag (OOB) observations.

For ith training point, let

S; = {b| D" does not contain ith point}.

The OOB prediction on x; is
foos (xi) = Z fy ()
€S;

The OOB error is a good estimate of the test error.

For large enough B, OOB error is like cross validation.
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Bagging Trees

e Input space X = R® and output space Y ={—1,1}.

e Sample size N =30 (simulated data)

Original Tree b=1
x.1<0.395 x.1<0.565

b=3 b=4
x2<0.285 x.3<0.985
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From ESL Figure 8.9
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Bagging

Bagging Trees

@ Two ways to combine classifications: consensus class or average

probabilities.

Test Error
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From ESL Figure 8.10

David Rosenberg (New York University)|

Consensus
©  Probability
W Original Tree
E
{
1; Bagged Trees
SBR
T T T T
0 50 100 150 200

Number of Bootstrap Samples

DS-GA 1003

March 4, 2015

12 / 16



Random Forests

Variance of a Mean of Correlated Variables

e For Z,74,..., Z, i.id. with EZ = and VarZ = 02,
B liz. Eiz
N I i I

o What if Z's are correlated?
@ Suppose Vi # j, Corr(Z;,Zj) =p . Then

2
o
=u Var = —
n

n

1
PP

i=1

1—
= p(fz—i-ipaz.
n

Var

o For large n, the po? term dominates — limits benefit of averaging.
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Random Forests

Random Forest

Main idea of random forests

Use bagged decision trees, but modify the tree-growing procedure to
reduce the correlation between trees.

e Key step in random forests:

o When constructing each tree node, restrict choice of splitting variable
to a randomly chosen subset of features of size m.

e Typically choose m = \/p, where p is the number of features.

@ Can choose m using cross validation.
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Random Forests

Random Forest: Effect of m size

0.5

04

Test Classification Error

T T T T T T
0 100 200 300 400 500

Number of Trees

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Random Forests

Random Forest: Effect of m size

@ See movie in Criminisi et al's PowerPoint:
http://research.microsoft.com/en-us/um/people/antcrim/
ACriminisi_DecisionForestsTutorial.pptx
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