Bagging and Random Forests

David Rosenberg

New York University

March 4, 2015

Variance of a Mean

- Let Z_1, \ldots, Z_n be independent r.v's with mean μ and variance σ^2 .
- Suppose we want to estimate μ .
- We could use any single Z_i to estimate μ .
- Variance of estimate would be σ^2 .
- Let's consider the average of the Z_i 's.
- Average has the same expected value but smaller variance:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\frac{\sigma^{2}}{n}.$$

• Can we apply this to reduce variance of prediction models?

Averaging Independent Prediction Functions

- Suppose we have *B* independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$ be the prediction models for each set.
- Define the average prediction function as:

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x).$$

- The average prediction function has lower variance than an individual prediction function.
- But in practice we don't have B independent training sets...
- Instead, we can use the bootstrap....

Variability of an Estimator

- Suppose we have a random sample X₁,..., X_n.
- Compute some function of the data, such as

$$\hat{\mu} = \phi(X_1, \ldots, X_n).$$

- We want to put error bars on $\hat{\mu}$, so we need to estimate $Var(\hat{\mu})$.
- Ideal scenario:
 - Attain B samples of size n.
 - Compute $\hat{\mu}_1, \ldots, \hat{\mu}_B$.
 - The sample variance of $\hat{\mu}_1,\ldots,\hat{\mu}_B$ estimates $Var(\hat{\mu})$
- Again, we don't have B samples. Only 1.

The Bootstrap Sample

Definition

A **bootstrap sample** from $\mathcal{D} = \{X_1, \dots, X_n\}$ is a sample of size *n* drawn with replacement from \mathcal{D} .

- $\bullet\,$ In a bootstrap sample, some elements of ${\mathcal D}\,$
 - will show up multiple times,
 - some won't show up at all.
- Each X_i has a probability $(1-1/n)^n$ of not being selected.
- Recall from analysis that for large n,

$$\left(1-\frac{1}{n}\right)^n \approx \frac{1}{e} \approx .368.$$

• So we expect ~63.2% of elements of ${\mathcal D}$ will show up at least once.

The Bootstrap Sample

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

The Bootstrap Method

Definition

A **bootstrap method** is when you *simulate* having *B* independent samples by taking *B* bootstrap samples from the sample \mathcal{D} .

- Given original data \mathcal{D} , compute *B* bootstrap samples D^1, \ldots, D^B .
- For each bootstrap sample, compute some function

$$\phi(D^1),\ldots,\phi(D^B)$$

- Work with these values as though D^1, \ldots, D^B were independent.
- Amazing fact: Things usually come out very close to what we'd get with independent samples.

Independent vs Bootstrap Samples

- Original sample size n = 100 (simulated data)
- $\hat{\alpha}$ is a complicated function of the data.
- Compare values of $\hat{\alpha}$ on
 - 1000 independent samples of size 100, vs
 - 1000 bootstrap samples of size 100

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Bagging

Bagging

- Suppose we had *B* independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$ be the prediction models from each set.
- Define the average prediction function as:

$$\hat{f}_{\mathsf{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x).$$

- But we don't have *B* independent training sets.
- **Bagging** is when we use *B* bootstrap samples as training sets.
- Bagging estimator given as

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}^{*}(x),$$

where \hat{f}_b^* is trained on the *b*'th bootstrap sample. • Bagging proposed by Leo Breiman (1996).

Out-of-Bag Error Estimation

- Each bagged predictor is trained on about 63% of the data.
- Remaining 37% are called out-of-bag (OOB) observations.
- For *i*th training point, let

 $S_i = \{ b \mid \mathcal{D}^b \text{ does not contain } i \text{th point} \}.$

• The OOB prediction on x_i is

$$\hat{f}_{OOB}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b^*(x).$$

- The OOB error is a good estimate of the test error.
- For large enough *B*, OOB error is like cross validation.

Bagging

Bagging Trees

- Input space $\mathcal{X} = \mathbf{R}^5$ and output space $\mathcal{Y} = \{-1, 1\}$.
- Sample size N = 30 (simulated data)

From ESL Figure 8.9

Bagging Trees

• Two ways to combine classifications: consensus class or average probabilities.

From ESL Figure 8.10

Variance of a Mean of Correlated Variables

• For Z, Z_1, \ldots, Z_n i.i.d. with $\mathbb{E}Z = \mu$ and $\operatorname{Var}Z = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\frac{\sigma^{2}}{n}.$$

- What if Z's are correlated?
- Suppose $\forall i \neq j$, $Corr(Z_i, Z_j) = \rho$. Then

$$\operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \rho\sigma^{2} + \frac{1-\rho}{n}\sigma^{2}.$$

• For large *n*, the $\rho\sigma^2$ term dominates – limits benefit of averaging.

Random Forest

Main idea of random forests

Use **bagged decision trees**, but modify the tree-growing procedure to reduce the correlation between trees.

- Key step in random forests:
 - When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size *m*.
- Typically choose $m \approx \sqrt{p}$, where p is the number of features.
- Can choose *m* using cross validation.

Random Forest: Effect of *m* size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Random Forest: Effect of m size

• See movie in Criminisi et al's PowerPoint: http://research.microsoft.com/en-us/um/people/antcrim/ ACriminisi_DecisionForestsTutorial.pptx