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Review

Variance of a Mean

Let Z1, . . . ,Zn be independent r.v’s with mean µ and variance σ2.
Suppose we want to estimate µ.
We could use any single Zi to estimate µ.
Variance of estimate would be σ2.
Let’s consider the average of the Zi ’s.
Average has the same expected value but smaller variance:

E

[
1
n

n∑
i=1

Zi

]
= µ Var

[
1
n

n∑
i=1

Zi

]
=
σ2

n
.

Can we apply this to reduce variance of prediction models?
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Review

Averaging Independent Prediction Functions

Suppose we have B independent training sets.
Let f̂1(x), f̂2(x), . . . , f̂B(x) be the prediction models for each set.
Define the average prediction function as:

f̂avg(x) =
1
B

B∑
b=1

f̂b(x).

The average prediction function has lower variance than an individual
prediction function.
But in practice we don’t have B independent training sets...
Instead, we can use the bootstrap....
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The Bootstrap

Variability of an Estimator

Suppose we have a random sample X1, . . . ,Xn.
Compute some function of the data, such as

µ̂= φ(X1, . . . ,Xn).

We want to put error bars on µ̂, so we need to estimate Var(µ̂).
Ideal scenario:

Attain B samples of size n.
Compute µ̂1, . . . , µ̂B .
The sample variance of µ̂1, . . . , µ̂B estimates Var(µ̂)

Again, we don’t have B samples. Only 1.
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The Bootstrap

The Bootstrap Sample

Definition
A bootstrap sample from D= {X1, . . . ,Xn} is a sample of size n drawn
with replacement from D.

In a bootstrap sample, some elements of D

will show up multiple times,
some won’t show up at all.

Each Xi has a probability (1−1/n)n of not being selected.
Recall from analysis that for large n,(

1−
1
n

)n

≈ 1
e
≈ .368.

So we expect ~63.2% of elements of D will show up at least once.

David Rosenberg (New York University) DS-GA 1003 March 4, 2015 5 / 16



The Bootstrap

The Bootstrap Sample
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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The Bootstrap

The Bootstrap Method

Definition
A bootstrap method is when you simulate having B independent samples
by taking B bootstrap samples from the sample D.

Given original data D, compute B bootstrap samples D1, . . . ,DB .
For each bootstrap sample, compute some function

φ(D1), . . . ,φ(DB)

Work with these values as though D1, . . . ,DB were independent.
Amazing fact: Things usually come out very close to what we’d get
with independent samples.
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The Bootstrap

Independent vs Bootstrap Samples

Original sample size n = 100 (simulated data)
α̂ is a complicated function of the data.
Compare values of α̂ on

1000 independent samples of size 100, vs
1000 bootstrap samples of size 100

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Bagging

Bagging

Suppose we had B independent training sets.
Let f̂1(x), f̂2(x), . . . , f̂B(x) be the prediction models from each set.
Define the average prediction function as:

f̂avg(x) =
1
B

B∑
b=1

f̂b(x).

But we don’t have B independent training sets.
Bagging is when we use B bootstrap samples as training sets.
Bagging estimator given as

f̂bag(x) =
1
B

B∑
b=1

f̂ ∗b (x),

where f̂ ∗b is trained on the b’th bootstrap sample.
Bagging proposed by Leo Breiman (1996).
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Bagging

Out-of-Bag Error Estimation

Each bagged predictor is trained on about 63% of the data.
Remaining 37% are called out-of-bag (OOB) observations.
For ith training point, let

Si =
{
b | Db does not contain ith point

}
.

The OOB prediction on xi is

f̂OOB(xi ) =
1
|Si |

∑
b∈Si

f̂ ∗b (x).

The OOB error is a good estimate of the test error.
For large enough B , OOB error is like cross validation.
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Bagging

Bagging Trees

Input space X= R5 and output space Y= {−1,1}.
Sample size N = 30 (simulated data)

From ESL Figure 8.9
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Bagging

Bagging Trees

Two ways to combine classifications: consensus class or average
probabilities.

From ESL Figure 8.10
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Random Forests

Variance of a Mean of Correlated Variables

For Z ,Z1, . . . ,Zn i.i.d. with EZ = µ and VarZ = σ2,

E

[
1
n

n∑
i=1

Zi

]
= µ Var

[
1
n

n∑
i=1

Zi

]
=
σ2

n
.

What if Z ’s are correlated?
Suppose ∀i 6= j , Corr(Zi ,Zj) = ρ . Then

Var

[
1
n

n∑
i=1

Zi

]
= ρσ2+

1−ρ
n
σ2.

For large n, the ρσ2 term dominates – limits benefit of averaging.
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Random Forests

Random Forest

Main idea of random forests

Use bagged decision trees, but modify the tree-growing procedure to
reduce the correlation between trees.

Key step in random forests:

When constructing each tree node, restrict choice of splitting variable
to a randomly chosen subset of features of size m.

Typically choose m ≈√p, where p is the number of features.
Can choose m using cross validation.
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Random Forests

Random Forest: Effect of m size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Random Forests

Random Forest: Effect of m size

See movie in Criminisi et al’s PowerPoint:
http://research.microsoft.com/en-us/um/people/antcrim/
ACriminisi_DecisionForestsTutorial.pptx
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