Boosting

David Rosenberg

New York University

March 11, 2015
Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models
- **Parallel ensembles**: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance
- **Sequential ensembles**:
 - Models are generated sequentially
 - Try to add new models that do well where previous models lack
A **weak learner** is a classifier that does slightly better than random guessing.

Weak learners are like “rules of thumb”:

- If an email has “Viagra” in it, more likely than not it’s spam.
- Email from a friend is probably not spam.
- A linear decision boundary.

Can we extract wisdom from a committee of fools?

Can we **combine** a set of weak classifiers to form a single classifier that makes accurate predictions?

- Posed by Kearns and Valiant (1988, 1989):

Yes! **Boosting** solves this problem. [Rob Schapire (1990).]
Consider $\mathcal{Y} = \{-1, 1\}$ (binary classification).

Suppose we have a weak learner:

- Hypothesis space $\mathcal{F} = \{f : \mathcal{X} \rightarrow \{-1, 1\}\}$.
- Algorithm for finding $f \in \mathcal{F}$ that’s better than random on training data.

Typical weak learners:

- **Decision stumps** (tree with a single split)
- Trees with few terminal nodes
- Linear decision functions
Training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.

Weights (w_1, \ldots, w_n) associated with each example.

Weighted empirical risk:

$$\hat{R}_n^w(f) = \frac{1}{W} \sum_{i=1}^{n} w_i \ell\{f(x_i), y_i\} \quad \text{where} \quad W = \sum_{i=1}^{n} w_i$$

Can train a model to minimize weighted empirical risk.

What if model cannot conveniently be trained to reweighted data?

Can sample a new data set from \mathcal{D} with probabilities $(w_1/W, \ldots, w_n/W)$.

AdaBoost

Weighted Training Set
AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{ (x_1, y_1), \ldots, (x_n, y_n) \}$.
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- So far, we’ve generated M classifiers: $G_1(x), \ldots, G_m(x)$.
AdaBoost: Schematic

Final Classifier

\[G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right] \]

From ESL Figure 10.1
AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- Final prediction $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
- The α_m’s are nonnegative,
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted \mathcal{D} less well
AdaBoost: Weighted Classification Error

- In round m, weak learner gets a weighted training set.
 - Returns a classifier $G_m(x)$ that roughly minimizes weighted 0–1 error.
- The **weighted 0-1 error** of $G_m(x)$ is
 \[
 \text{err}_m = \frac{1}{W} \sum_{i=1}^{n} w_i 1(y_i \neq G_m(x_i)) \quad \text{where} \quad W = \sum_{i=1}^{n} w_i.
 \]
- Notice: $\text{err}_m \in [0, 1]$.
- We treat the weak learner as a black box.
 - It can use any method it wants to find $G_m(x)$. (e.g. SVM, tree, etc.)
 - BUT, for things to work, we need at least $\text{err}_m < 0.5$.

AdaBoost: Classifier Weights

- The weight of classifier $G_m(x)$ is $\alpha_m = \ln \left(\frac{1 - \text{err}_m}{\text{err}_m} \right)$.

- Note that weight $\alpha_m \to 0$ as weighted error $\text{err}_m \to 0.5$ (random guessing).
AdaBoost: Example Reweighting

- We train G_m to minimize weighted error, and it achieves err_m.
- Then $\alpha_m = \ln \left(\frac{1 - err_m}{err_m} \right)$ is the weight of G_m in final ensemble.
- Suppose w_i is weight of example i before training:
 - If G_m classifies x_i correctly, then w_i is unchanged.
 - Otherwise, w_i is increased as

 $$ w_i \leftarrow w_i e^{\alpha_m} $$

 $$ = w_i \left(\frac{1 - err_m}{err_m} \right) $$

- [Is it clear why this is always increasing the weight?]
AdaBoost: Example Reweighting

- Any misclassified point has weight adjusted as $w_i \leftarrow w_i \left(\frac{1 - \text{err}_m}{\text{err}_m} \right)$.

- The smaller err_m, the more we increase weight of misclassified points.
AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.

1. Initialize observation weights $w_i = 1/n$, $i = 1, 2, \ldots, n$.
2. For $m = 1$ to M:
 1. Fit weak classifier $G_m(x)$ to \mathcal{D} using weights w_i.
 2. Compute weighted empirical 0-1 risk:
 \[
 \text{err}_m = \frac{1}{W} \sum_{i=1}^{n} w_i 1(y_i \neq G_m(x_i))
 \]
 where \(W = \sum_{i=1}^{n} w_i \).
 3. Compute $\alpha_m = \ln \left(\frac{1-\text{err}_m}{\text{err}_m} \right)$.
 4. Set $w_i \leftarrow w_i \cdot \exp \left[\alpha_m 1(y_i \neq G_m(x_i)) \right]$, $i = 1, 2, \ldots, N$.
3. Output $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
AdaBoost with Decision Stumps

- After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.
AdaBoost with Decision Stumps

- After 3 rounds:

![Diagram]

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
AdaBoost with Decision Stumps

- After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.
AdaBoost: Does it actually minimize training error?

- Methods we’ve seen so far come in two categories:
 - Convex optimization problems (L1/L2 regression, SVM, kernelized versions)
 - No issue minimizing objective function over hypothesis space
 - Trees
 - Can always fit data perfectly with big enough trees

- AdaBoost is something new - at this point, it’s just an algorithm.
- Will $G(x)$ even minimize training error?
- “Yes”, if our weak classifiers have an “edge” over random.
AdaBoost: Does it actually minimize training error?

- As a weak classifier, $G_m(x)$ should have $\text{err}_m < \frac{1}{2}$.
- Define the edge of classifier $G_m(x)$ at round m to be
 \[\gamma_m = \frac{1}{2} - \text{err}_m. \]
- Measures how much better than random G_m performs.
Theorem

The empirical 0-1 risk of the AdaBoost classifier $G(x)$ is bounded as

$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leq \prod_{m=1}^{M} \sqrt{1 - 4\gamma_m^2}.$$
AdaBoost: Does it actually minimize training error?

Example

Suppose $\text{err}_m \leq 0.4$ for all m.

- Then $\gamma_m = 0.5 - 0.4 = 0.1$, and

$$
\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leq \prod_{m=1}^{M} \sqrt{1 - 4(0.1)^2} \approx (0.98)^M
$$

- Bound decreases exponentially:

 $0.98^{100} \approx 0.133$
 $0.98^{200} \approx 0.018$
 $0.98^{300} \approx 0.002$

- With a consistent edge, training error decreases very quickly to 0.

For more details, see the book *Boosting: Foundations and Algorithms* by Schapire and Freund.
Typical Train / Test Learning Curves

- Might expect too many rounds of boosting to overfit:

From Rob Schapire’s NIPS 2007 Boosting tutorial.
In typical performance, AdaBoost is surprisingly resistant to overfitting. Test continues to improve even after training error is zero!

From Rob Schapire's NIPS 2007 Boosting tutorial.
AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

View this as an adaptive basis function model:

- Linear in the basis functions.
- But basis functions are learned from the data.
Adaptive Basis Function Model

- Can write adaptive basis function expansion as

\[f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m), \]

- where \(\beta_m \) are **expansion coefficients**
 - and \(b(x; \gamma_m) \) is a function of \(x \), parameterized by \(\gamma_m \).

- For example, each \(b(x; \gamma_m) \) could be a tree
 - \(\gamma_m \) would characterize the splits and the terminal node predictions

- If the \(\gamma_m \)'s were known, this would just be a linear model.
- This type of model is also called an **additive** model.
Would be nice directly minimize the empirical risk:

\[
\min_{\{\beta_m, \gamma_m\}_{m=1}^M} \sum_{i=1}^n \ell \left(y_i, \sum_{m=1}^M \beta_m b(x_i; \gamma_m) \right).
\]

Prediction function more general than what we’ve seen before.
Difficult to solve, in general.

We’ll discuss an approximate “greedy” solution, known as

- forward stagewise additive modeling
Forward Stagewise Additive Modeling

Sequentially add basis functions to the expansion, without adjusting the parameters or coefficients of the functions that have already been added.

1. Initialize $f_0(x) = 0$.

2. For $m = 1$ to M:

 1. Compute:

 $$(\beta_m, \gamma_m) = \arg \min_{\beta, \gamma} \sum_{i=1}^{n} \ell\{y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)\}.$$

 2. Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

3. Return: $f_M(x)$.

Note: Actually implementing this minimization is difficult in general. More on this later.
Exponential Loss and AdaBoost

- Take loss function to be
 \[\ell(y, f(x)) = \exp(-yf(x)). \]

- Let \(\mathcal{F} = \{b(x; \gamma) \mid \gamma \in \Gamma\} \) be a hypothesis space of weak classifiers.

- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost!

 (See HTF Section 10.4 for proof.)

- Only difference:

 - AdaBoost is loose about each \(G_m \) “fitting the weighted training data”

 - For FSAM we’re explicitly looking for

\[
G_m = \arg \min_{G \in \mathcal{F}} \sum_{i=1}^{N} w_i^{(m)} \mathbf{1}(y_i \neq G(x_i))
\]
Exponential Loss

- Note that exponential loss puts a very large weight on bad misclassifications.
AdaBoost / Exponential Loss: Robustness Issues

- When Bayes error rate is high (e.g. $\mathbb{P}(f^*(X) \neq Y) = 0.25$)
 - Training examples with same input, but different classifications.
 - Best we can do is predict the most likely class for each X.

- Some training predictions should be wrong (because example doesn’t have majority class)
 - AdaBoost / exponential loss puts a lot of focus on getting those right

- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate, or when there’s
 - high “label noise”

- Logistic loss performs better with high Bayes error
Population Minimizers

- In traditional statistics, the **population** refers to
 - the full population of a group, rather than a sample.
- In machine learning, the **population case** is the hypothetical case of
 - an infinite training sample from $P_{X \times Y}$.
- A **population minimizer** for a loss function is another name for the risk minimizer.
- For the exponential loss $\ell(m) = e^{-m}$, the population minimizer is given by

 $$f^*(x) = \frac{1}{2} \ln \frac{P(Y = 1 \mid X = x)}{P(Y = -1 \mid X = x)}$$

 (Short proof in KPM 16.4.1)
- By solving for $P(Y = 1 \mid X = x)$, we can give probabilistic predictions from AdaBoost as well.
Population Minimizers

- AdaBoost has the robustness issue because of the exponential loss.
- Logistic loss $\ell(m) = \ln(1 + e^{-m})$ has the same population minimizer.
 - But works better with high label noise or high Bayes error rate
- Population minimizer of SVM hinge loss is

$$f^*(x) = \text{sign} \left[\mathbb{P}(Y = 1 \mid X = x) - \frac{1}{2} \right].$$

- Because of the sign, we cannot solve for the probabilities.