
Machine Learning and Computational Statistics, Spring 2015

Homework 4: Kernels and Duals

Due: Tuesday, March 3, 2015, at 4pm (Submit via NYU Classes)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single PDF file. You may include your code inline or submit it as a
separate file. You may either scan hand-written work or, preferably, write your answers using
software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython).

1 Introduction

The problem set begins with a review of some important linear algebra concepts that we routinely
use in machine learning and statistics. The solutions to each of these problems is at most a few lines
long, and we’ve tried to give helpful hints. Everything leads up to proving a basic and important
property of positive semidefinite matrices. These aren’t meant to be challenging problems – just
the opposite, in fact – we’d like this material to be second nature to you. We next have a couple
problems on kernel methods, both of which should be quite easy if you understand the context.
The last problem is both an introduction to “novelty detection” algorithms, as well as an exercise
in the machinery of Lagrangian duality. This is the only problem that has a lengthy solution.

2 Positive Semidefinite Matrices

In statistics and machine learning, we use positive semidefinite matrices a lot. Let’s recall some
definitions from linear algebra that will be useful here:

Definition. A set of vectors {x1, . . . , xn} is orthonormal if 〈xi, xi〉 = 1 for any i ∈ {1, . . . , n}
(i.e. xi has unit norm), and for any i, j ∈ {1, . . . , n} with i 6= j we have 〈xi, xj〉 = 0 (i.e. xi and xj
are orthogonal).

Note that if the vectors are column vectors in a Euclidean space, we can write this as xTi xj =
1(i 6= j) for all i, j ∈ {1, . . . , n}.

Definition. A matrix is orthogonal if it is a square matrix with orthonormal columns.
It follows from the definition that if a matrix M ∈ Rn×n is orthogonal, then MTM = I, where

I is the n× n identity matrix. Thus MT = M−1, and so MMT = I as well.

Definition. A matrix M is symmetric if M = MT .

Definition. For a square matrix M , if Mv = λv for some column vector v and scalar λ, then v is
called an eigenvector of M and v is the corresponding eigenvalue.
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Theorem (Spectral Theorem). A real, symmetric matrix M ∈ Rn×n can be diagonalized as
M = QΣQT , where Q ∈ Rn×n is an orthogonal matrix whose columns are a set of orthonormal
eigenvectors of M , and Σ is a diagonal matrix of the corresponding eigenvalues.

Definition. A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any
x ∈ Rn,

xTMx ≥ 0.

Note that unless otherwise specified, when a matrix is described as positive semidefinite, we are
implicitly assuming it is real and symmetric (or complex and Hermitian in certain contexts, though
not here).

As an exercise in matrix multiplication, note that for any matrix A with columns a1, . . . , ad,
that is

A =

 | |
a1 · · · ad
| |

 ∈ Rn×d,

we have

ATMA =


aT1Ma1 aT1Ma2 · · · aT1Mad
aT2Ma1 aT2Ma2 · · · aT2Mad

...
... · · ·

...
aTdMa1 aTdMa2 · · · aTdMad

 .

So M is psd if and only if for any A ∈ Rn×d, we have diag(ATMA) =
(
aT1Ma1, . . . , a

T
dMad

)T � 0,
where � is elementwise inequality, and 0 is a d× 1 column vector of 0’s .

1. Give an example of an orthogonal matrix that is not symmetric. (Hint: You can use a 2× 2
matrix with only 0’s and 1’s.)

2. Use the definition of a psd matrix and the spectral theorem to show that all eigenvalues of
a positive semidefinite matrix are non-negative. [Hint: In the definition of psd, make a good
choice for x.]

3. In this problem we show that a psd matrix is a matrix version of a non-negative scalar, in
that they both have a “square root”. Show that a symmetric matrix M can be expressed as
M = BBT for some matrix B, if and only if M is psd. [Hint: To show M = BBT implies M
is psd, use the fact that for any vector v, vT v ≥ 0. To show that M psd implies M = BBT

for some B, use the Spectral Theorem.]

3 Kernel Matrices

(Problem from Michael Jordan’s Stat 241b Problem Set #1, Spring 2004)
The following problem will gives us some additional insight into what information is encoded in

the kernel matrix.

1. Consider a set of vectors S = {x1, . . . , xm}. Let X denote the matrix whose rows are these
vectors. Form the Gram matrix K = XXT . Show that knowing K is equivalent to knowing
the set of pairwise distances among the vectors in S as well as the vector lengths. [Hint: The
distance between x and y is given by d(x, y) = ‖x− y‖, and the norm of a vector x is defined

as ‖x‖ =
√
〈x, x〉 =

√
xTx.]
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4 Kernel Ridge Regression

In this problem, we complete the kernelization of ridge regression that we discussed in Lab (see
https://davidrosenberg.github.io/ml2015/docs/4.Lab.kernelizations.pdf). To
recap, the ridge regression objective function is given by

J(w) = ||Xw − y||2 + λ||w||2,

where X ∈ Rn×d is the design matrix, and λ > 0 is the regularization parameter. We showed
that the minimizer is given by w∗ = XTα∗, where α∗ = (λI + XXT )−1y. We can replace the
Gram matrix XXT by the data kernel matrix corresponding to any kernel satisfying Mercer’s
theorem. We also showed that the vector of predictions on the training points is given by Xw =(
XXT

) (
λI +XXT

)−1
y, which is also “kernelized”.

1. Give an expression for the prediction f(x) = xTw∗ for a new point x, not in the training set.
The expression should only involve x via inner products with other x’s. [Hint: It is often
convenient to define the column vector

kx =

x
Tx1
...

xTxn


to simplify the expression.]

5 Novelty Detection

(Problem derived from Michael Jordan’s Stat 241b Problem Set #2, Spring 2004)
A novelty detection algorithm can be based on an algorithm that finds the smallest possible

sphere containing the data in feature space.

1. Let φ : X → F be our feature map, mapping elements of the input space into our “feature
space” F , which is equipped with an inner product. Formulate the novelty detection algorithm
described above as an optimization problem.

2. Give the Lagrangian for this problem, and write an equivalent, unconstrained “inf sup” version
of the optimization problem.

3. Show that we have strong duality and thus we will have an equivalent optimization problem
if we swap the inf and the sup. [Hint: Use Slater’s qualification conditions.]

4. Solve the inner minimization problem and give the dual optimization problem. [Note: You
may find it convenient to define the kernel function k(xi, xj) = 〈φ(xi), φ(xj)〉 and to write
your final problem in terms of the corresponding kernel matrix K to simplify notation.]

5. Write an expression for the optimal sphere in terms of the solution to the dual problem.

6. Write down the complementary slackness conditions for this problem, and characterize the
points that are the “support vectors”.
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7. Briefly explain how you would apply this algorithm in practice to detect “novel” instances.

8. [Optional] Redo this problem allowing some of the data to lie outside of the sphere, where the
number of points outside the sphere can be increased or decreased by adjusting a parameter.
(Hint: Use slack variables).

6 Feedback (not graded)

1. Approximately how long did it take to complete this assignment?

2. Any other feedback?
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