
Machine Learning and Computational Statistics, Spring 2015

Homework 6: Midterm Review

Due: Friday April 10, 2015, at 4pm (Submit via NYU Classes)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single PDF file. You may include your code inline or submit it as a
separate file. You may either scan hand-written work or, preferably, write your answers using
software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython).

1 Robust Ridge Regression

1. Lasso regression uses a square loss with `1 regularization. Here we consider an `1 loss with
`2 regularization. Suppose we have a training set D = {(x1, y1) , . . . , (xn, yn)}, where xi ∈
X = Rd and yi ∈ Y = R, for all i = 1, . . . , n. Write the objective function for `2-regularized
emprical risk minimization with an `1 loss, over a linear hypothesis space.

2. Show that the objective function is convex. (You are free to cite any of the facts given in
Appendix A).

3. Write the objective function as a quadratic program (i.e. an optimization problem with a
quadratic objective and linear constraints).

2 RBF Kernel

1. The RBF kernel k(xi, xj) = exp
(
− 1

2‖xi − xj‖
2
)

is symmetric, positive semidefinite, and thus
by Mercer’s theorem we know there exists an inner product space H (i.e. a space with an
inner product 〈·, ·〉 defined) and a “feature mapping” φ : Rd → H such that k(xi,xj) =
〈φ(xi), φ(xj)〉. Show that the distance between the feature representations of any two points
xi and xj in the space H is at most

√
2. (Hint: In an inner product space, the distance

between two elements x and y is defined as ‖x− y‖, and ‖x‖ =
√
〈x, x〉. Also, See Homeork

#4 Problem 2.1.)

3 Regularized Logistic Regression

(Source: Jaakkloa.) Consider minimizing

J(w) = −L(w,Dtrain) + λ‖w‖2
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where

L(w,D) =
1

|D|
∑
i∈D

log σ
(
yix

T
i w
)
,

and where σ(a) = 1/ (1 + e−a), denotes the size of the set D, and yi ∈ {−1, 1}. Answer the following
true/false questions with brief explanation (so it’s clear you’re not just guessing):

1. J(w) has multiple locally optimal solutions? T/F?

2. Let ŵ = arg minw J(w) be a global optimum. Then ŵ is sparse (i.e. has many zero entries).
T/F?

3. [Optional] If the training data are linearly separable, then some weights wj might become
infinite if λ = 0. T/F?

4. L(ŵ,Dtrain) always increases as we increase λ. [NOTE: L is the log-likelihood, and the
negative empirical risk.] T/F?

5. L(ŵ,Dtest) always increases as we increase λ. T/F?

4 Neural Networks with Linear Activation Function

Suppose we have the neural network shown below with linear activation function. That is, the
output of the top hidden node is h1 = c (x1w1 + x2w3) and the bottom hidden node outputs
h2 = c(x1w2 + x2w4). The output node is just Y = h1w5 + h2w6.

1. Redesign the neural network to compute the same function without using any hidden units.
Draw the equivalent network and give expressions detailing for the new weights in terms of
the old weights and the constant c.

2. Can the space of functions that is represented by the above neural network also be represented
by linear regression?
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A Convexity

A.1 Examples of Convex Functions (BV 3.1.5)

Functions mapping from R:

• x 7→ eax is convex on R for all a ∈ R

• x 7→ xa is convex on R++ when a ≥ 1 or a ≤ 0 and concave for 0 ≤ a ≤ 1

• |x|p for p ≥ 1 is convex on R

• log x is concave on R++

• x log x (either on R++ or on R+ if we define 0 log 0 = 0) is convex

Functions mapping from Rn:

• Every norm on Rn is convex

• Max: (x1, . . . , xn) 7→ max {x1 . . . , xn} is convex on Rn

• Log-Sum-Exp1: (x1, . . . , xn) 7→ log (ex1 + · · ·+ exn) is convex on Rn.

A.2 Operations the preserve convexity (BV 3.2, p. 79)

A.2.1 Nonnegative weighted sums

If f1, . . . , fm are convex and w1, . . . , wm ≥ 0, then f = w1f1+· · ·+wmfm is convex. More generally,
if f(x, y) is convex in x for each y ∈ A, and if w(y) ≥ 0 for each y ∈ A, then the function

g(x) =

ˆ
A
w(y)f(x, y) dy

is convex in x (provided the integral exists).

A.2.2 Composition with an affine mapping

A function f : Rn → Rm is an affine function (or affine mapping) if it is a sum of a linear
function and a constaint. That is, if it has the form f(x) = Ax+ b, where A ∈ Rm×n and b ∈ Rm.

Composition of a convex function with an affine function is convex. More precisely: suppose
f : Rn → R, A ∈ Rn×m and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax+ b) ,

with dom g = {x | Ax+ b ∈ dom f}. Then if f is convex, then so is g; if f is concave, so is g. If
f is strictly convex, and A has linearly independent columns, then g is also strictly convex.

1This function can be interpreted as a differentiable (in fact, analytic) approximation to the max function, since

max {x1, . . . , xn} ≤ log (ex1 + · · ·+ exn ) ≤ max {x1, . . . , xn}+ logn.

Can you prove it? Hint: max(a, b) ≤ a + b ≤ 2 max(a, b).
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A.2.3 Simple Composition Rules

• If g is convex then exp g(x) is convex.

• If g is convex and nonnegative and p ≥ 1 then g(x)p is convex.

• If g is concave and positive then log g(x) is concave

• If g is concave and positive then 1/g(x) is convex.

A.2.4 Maximum of convex functions is convex (BV Section 3.2.3, p. 80)

Note: Below we use this to prove that the Lagrangian dual function is concave.
If f1, . . . , fm : Rn → R are convex, then their pointwise maximum

f(x) = max {f1(x), . . . , fm(x)}

is also convex with domain dom f = dom f1 ∩ · · · ∩ dom fm.
This result extends to the supremum over arbitrary sets of functions (including uncountably

infinite sets).
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