Subgradient Descent

David Rosenberg

New York University

October 29, 2016

Convex Sets

Definition

A set C is convex if the line segment between any two points in C lies in C.

KPM Fig. 7.4

Convex and Concave Functions

Definition

A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if the line segment connecting any two points on the graph of f lies above the graph. f is concave if $-f$ is convex.

First-Order Approximation

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable
- Suppose we know $f(x)$ and $\nabla f(x)$.
- What can we say about $f(y)$, when y is near x ?
- We have the following linear approximation:

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)
$$

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and differentiable
- Then for any $x, y \in \mathbf{R}^{n}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

- The linear approximation to f at x is a global underestimator of f :

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and differentiable
- Then for any $x, y \in \mathbf{R}^{n}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

Corollary
If $\nabla f(x)=0$ then x is a global minimizer of f.

Subgradients

Definition

A vector $g \in \mathbf{R}^{n}$ is a subgradient of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x) .
$$

- g is a subgradient iff $f(x)+g^{T}(z-x)$ is a global underestimator of f

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the subdifferential: $\partial f(x)$

Basic Facts

- If f is convex and differentiable, then $\nabla f(x)$ is the unique subgradient of f at x.
- Any point x, there can be 0,1 , or infinitely many subgradients.
- Can only be 0 for non-convex f.

Globla Optimality Condition

Definition

A vector $g \in \mathbf{R}^{n}$ is a subgradient of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x) .
$$

Corollary
If $0 \in \partial f(x)$, then x is a global minimizer of f.

Subdifferential of Absolute Value

- Consider $f(x)=|x|$

- Plot on right shows $\cup\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$
- See B\&V's notes for more: http://web.stanford.edu/class/ ee364b/lectures/subgradients_notes.pdf

Subgradient Descent

Subgradient Descent

- Initialize $x=0$
- repeat
- $x \leftarrow x-\eta g$ for $g \in \partial f(x)$ and η chosen according to step size rule
- until stopping criterion satisfied
- Note: Not necessarily a "descent method"
- in a descent method, every step is an improvement
- Always keep track of the best x we've seen as we go

Step Size

- Because not a descent method, can't adaptive step size
- i.e. we don't use backtracking line search.
- Need to determine step sizes in advance
- Two main choices:
(1) Fixed step size
(2) Step sizes decrease according to Robbins-Monro Conditions:

$$
\sum_{t=1}^{\infty} \eta_{t}^{2}<\infty \quad \sum_{t=1}^{\infty} \eta_{t}=\infty
$$

- e.g. $\eta_{t}=1 / t$.

Convergence Theorem for Fixed Step Size

Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For fixed step size η, subgradient method satisfies:

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leqslant f\left(x^{*}\right)+G^{2} t / 2
$$

Convergence Theorems for Decreasing Step Sizes

Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For step size respecting Robbins-Monro conditions,

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leqslant f\left(x^{*}\right)
$$

Coordinate Subdifferential of Lasso Objective

- Lasso objective:

$$
\min _{w \in \mathbf{R}^{d}} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda|w|_{1}
$$

- Partial derivative of empirical risk (homework):

$$
\frac{\partial}{\partial w_{k}} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}=a_{k} w_{k}-c_{k}
$$

where

$$
a_{j}=2 \sum_{i=1}^{n} x_{i j}^{2} \quad c_{j}=2 \sum_{i=1}^{n} x_{i j}\left(y_{i}-w_{-j}^{T} x_{i,-j}\right)
$$

Coordinate Subdifferential of Lasso Objective

- Subdifferential of $|w|_{1}$:

$$
\partial_{w_{k}} \lambda|w|= \begin{cases}-\lambda & w_{k}<0 \\ \lambda & w_{k}>0 \\ {[-\lambda, \lambda]} & w_{k}=0\end{cases}
$$

- So subdifferential of objective is:

$$
\partial_{w_{k}}(\text { Lasso Objective })= \begin{cases}a_{k} w_{k}-c_{k}-\lambda & w_{k}<0 \\ a_{k} w_{k}-c_{k}+\lambda & w_{k}>0 \\ {\left[-c_{k}-\lambda,-c_{k}+\lambda\right]} & w_{k}=0\end{cases}
$$

Coordinate Subdifferential of Lasso Objective

- Solving for $0 \in \partial_{w_{k}}$ (Lasso Objective):
- Case 1: $w_{k}<0$:

$$
a_{k} w_{k}-c_{k}-\lambda=0 \Longrightarrow w_{k}=\left(c_{k}+\lambda\right) / a_{k}
$$

So if $c_{k}<-\lambda$, then $w_{k}=\left(c_{k}+\lambda\right) / a_{k}$ is a critical point

- Case 2: $w_{k}>0$: If $c_{k}>\lambda$ then $w_{k}=\left(c_{k}-\lambda\right) / a_{k}$ is a critical point
- Case 3: $w_{k}=0: w_{k}=0$ and $c_{k} \in[-\lambda, \lambda] \Longrightarrow 0 \in\left[-c_{k}-\lambda,-c_{k}+\lambda\right]$ so $w_{k}=0$ is a critical point
- So $0 \in \partial_{w_{k}}$ (Lasso Objective) iff

$$
w_{j}\left(c_{j}\right)= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\ 0 & \text { if } c_{j} \in[-\lambda, \lambda] \\ \left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases}
$$

