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True / False

New Features

(True or False, 1 pt) When using (unregularized) linear regression,
adding new features always improves the performance on training
data, or at least never make it worse.
(True or False, 1 pt)When using a (unregularized) linear regression,
adding new features always improves the performance on test data, or
at least never make it worse.

Adding new features makes a bigger hypothesis space

decrease training error
could lead to overfitting

Said “unregularized linear regression”, because regularization can
prevent overfitting
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True / False

Overfitting

(True or False, 1 pt) Overfitting is more likely when the set of
training data is small.
(True or False, 1 pt) Overfitting is more likely when the hypothesis
space is small.

Whether you overfit depends on

size of the training set and
the size of the hypothesis space
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True / False

Estimation Error / Approximation Error

(True or False, 1 pt) Approximation error decreases to zero as the
amount of training data goes to infinity.
(True or False, 1 pt) If the empirical risk function is not convex,
more training data may not help estimation error.

f ∗ =argmin
f

E`(f (X ),Y )

fF =argmin
f∈F

E`(f (X ),Y ))

f̂n =argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi )
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True / False

Duplicate Features in a Tree

(True or False, 1 pt) If a decision tree is trained on data for which
two features are exactly equal, the resulting tree will be the same
whether or not we remove one of those two features.

David Rosenberg (New York University) DS-GA 1003 June 9, 2015 5 / 20



True / False

Feature Rescaling

(True or False, 1 pt) Suppose we fit Lasso regression to a data set. If we
rescale one of the features by multiplying it by 10, and we then refit Lasso
regression with the same regularization parameter, then it is more likely for
that feature to be excluded from the model

Big feature values =⇒ smaller coefficients =⇒ less lasso penalty
=⇒ more likely to have be kept
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True / False

Kernel Methods Scalability

(True or False, 1 pt) When you have a very large data set of size n, which
is much larger than the dimension d of the feature space, kernel methods
are probably not a good idea.

At the heart of kernel methods is the kernel matrix, which is n×n.
If n is huge, kernel methods become much more difficult.
If feature space is also much smaller, no obvious reason to use
kernelized approach.
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True / False

AdaBoost Converges to Zero Training Error?

(True or False, 1 pt) Adaboost with decision stumps will eventually
reach zero training error, provided we run enough rounds of boosting.
The best any method can do is to converge to

min
f

1
n

n∑
i=1

`(f (xi ),yi )

But this may not be zero.
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Short Answer

Support Vectors

(1 pt) Circle all of the loss functions that may lead to sparsity of
support vectors: exponential loss, hinge loss, squared hinge loss,
logistic loss, square loss.
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Short Answer

`1/`2 regularization

(4 pts) We have a dataset D= {(0,1) ,(1,4),(2,3)} that we fit by
minimizing an objective function of the form:

J(α0,α1) =

3∑
i=1

(α0+α1xi − yi )
2+λ1 |α0+α1|+λ2(α

2
0+α

2
1),

and the corresponding fitted function is given by f (x) = α0+α1x . We
tried four different settings of λ1 and λ2, and the results are shown in
Figure. For each of the following parameter settings, give the number
of the plot that shows the resulting fit.

1 (1 pt) λ1 = 0 and λ2 = 0.
2 (1 pt) λ1 = 5 and λ2 = 0.
3 (1 pt) λ1 = 0 and λ2 = 10.
4 (1 pt) λ1 = 0 and λ2 = 2.
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Short Answer

`1/`2 regularization
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Short Answer

Kernel Function

Show that the following kernel function is a Mercer kernel (i.e. it
represents an inner product):

k(x ,y) =
xT y

‖x‖‖y‖
,

where x ,y ∈ Rd .
For φ(x) = x

‖x‖ , we have

k(x ,y) = 〈φ(x),φ(y)〉 .
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Short Answer

Nonlinear Feature Mappings

(2 pts) Consider the binary classification problem shown in Figure

Denote the input space by X=
{
(x1,x2) ∈ R2

}
. Give a feature mapping for

which a linear classifier could perfectly separate the two classes shown.
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Short Answer

Nonlinear Feature Mappings

(2 pts) Consider the binary classification problem shown in Figure

Denote the input space by X=
{
(x1,x2) ∈ R2

}
. Give a feature mapping for

which a linear classifier could perfectly separate the two classes shown.

φ(x) =
(
1,x1,x2,x

2
1 ,x

2
2 ,x1x2

)
φ(x) =

(
x2
1 + x2

2
)
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Short Answer

Hypothesis Space Decision Boundaries

1 (2 pts) For the classification problem in Figure, circle all classifiers
that could perfectly separate the classes: linear SVM, SVM with
quadratic kernel, decision stumps (i.e. classification trees with
only two leaf nodes), AdaBoost with decision stumps, SVM
with radial basis function kernel.
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Short Answer

Kernel Machine Prediction Functions

In general, when we kernelize a linear method, prediction functions
have form

f ∗(x) =

n∑
i=1

βik(xi ,x)

Basis function viewpoint – each k(xi , ·) is a basis function:

Prediction functions look like
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Short Answer

Trees vs Linear Classifiers

(2 pts) Let F1 = {binary decision trees of depth 2}. Let
F2 = {all linear classifiers}. Draw a binary classification dataset for
which a member of F1 can perfectly separate the data, while no
member of F2 can. Show the splits and the decision boundary for the
tree.
(2 pts) Same F1 and F2 as in the previous problem. Draw a binary
classification dataset for which a member of F2 can perfectly separate
the data, while no member of F1 can.
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Hypothesis Spaces

Unnecessary Features

(1 pt) Consider the following two hypothesis spaces:

F1 = {f (x) = ew1x +w2x | w1,w2 ∈ R} F2 = {f (x) = wx | w ∈ R}

Suppose we are selecting hypotheses using empirical risk minimization
(without any penalty).
Are there any situations in which one of these hypothesis spaces would
be preferred to the other? Why?
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Hypothesis Spaces

Restricted Feature

(1 pt) Consider the following two hypothesis spaces:

F1 = {f (x) = ew1x | w1 ∈ R} F2 = {f (x) = wx | w ∈ R}

Suppose we are selecting hypotheses using empirical risk minimization
(without any penalty).
Are there any situations in which one of these hypothesis spaces would
be preferred to the other? Why?
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Hypothesis Spaces

Complexity Constraints for Binary Trees

(1 pt) Consider the following two hypothesis spaces:

F1 = {binary trees of depth at most 2}
F2 = {binary trees with at most 4 leaf nodes}

F1 is contained in F2

F2 allows more tree depth =⇒ more feature interaction
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