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Introduction

Probabilistic Reasoning

Represent system of interest by a set of random variables

(X1, . . . ,Xd) .

Suppose by research or machine learning, we get a joint probability
distribution

p(x1, . . . ,xd).

We’d like to be able to do inference on this model – essentially,
answer queries:

1 What is the most likely of value X1?
2 What is the most likely of value X1, given we’ve observed X2 = 1?
3 Distribution of (X1,X2) given observation of (X3 = x3, . . . ,Xd = xd )?
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Introduction

Example: Medical Diagnosis

Variables for each symptom
fever, cough, fast breathing, shaking, nausea, vomiting

Variables for each disease
pneumonia, flu, common cold, bronchitis, tuberculosis

Diagnosis is performed by inference in the model:

p(pneumonia= 1 | cough= 1, fever= 1,vomiting= 0)

The QMR-DT (Quick Medical Reference - Decision Theoretic) has

600 diseases
4000 symptoms

Example from David Sontag’s Inference and Representation, Lecture 1.
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Discrete Probability Distribution Review

Some Notation

This lecture we’ll only be considering discrete random variables.
Capital letters X1, . . . ,Xd ,Y , etc. denote random variables.
Lower case letters x1, . . . ,xn,y denote the values taken.
Probability that X1 = x1 and X2 = x2 will be denoted

P(X1 = x1,X2 = x2) .

We’ll generally write things in terms of the probability mass function:

p(x1,x2, . . . ,xd) := P(X1 = x1,X2 = x2, . . . ,Xd = xd)
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Discrete Probability Distribution Review

Representing Probability Distributions

Let’s consider the case of discrete random variables.
Conceptually, everything can be represented with probability tables.
Variables

Temperature T ∈ {hot,cold}
Weather W ∈ {sun, rain}

t p(t)

hot 0.5
cold 0.5

w p(w)

sun 0.6
rain 0.4

These are the marginal probability distributions.
To do reasoning, we need the joint probability distribution.

Based on David Sontag’s DS-GA 1003 Lectures, Spring 2014, Lecture 10.
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Discrete Probability Distribution Review

Joint Probability Distributions

A joint probability distribution for T and W is given by

t w p(t,w)

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

A valid probability distribution if

∀t,w : p(t,w)> 0∑
t,w p(t,w) = 1.

Based on David Sontag’s DS-GA 1003 Lectures, Spring 2014, Lecture 10.

David Rosenberg (New York University) DS-GA 1003 June 9, 2015 6 / 47



Discrete Probability Distribution Review

Conditional Distributions From the Joint Distribution

We observe T = hot. What’s the conditional distribution of W ?

p (w | T = hot) =?

Method:
1 Find entries in joint distribution table where T = hot.

t w p(t,w)

hot sun 0.4
hot rain 0.1

2 Renormalize to get conditional probability.

t w p(t,w) p(w | T = hot)
hot sun 0.4 0.4/0.5= 0.8
hot rain 0.1 0.1/0.5= 0.2
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Discrete Probability Distribution Review

Conditional Distributions From the Joint Distribution

Definition
The conditional probability for w given t is

p(w | t) =
p(w , t)

p(t)
.

t w p(t,w) p(w | T = hot)
hot sun 0.4 0.4/0.5= 0.8
hot rain 0.1 0.1/0.5= 0.2
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Discrete Probability Distribution Review

Representing Joint Distributions

Consider random variables X1, . . . ,Xd ∈ {0,1}.
How many parameters do we need to represent the joint distribution?
Joint probability table has 2d rows.
For QMR-DT, that’s 24600 > 101000 rows.
That’s not going to happen.
Having exponentially many parameters is a problem for

storage
computation (inference is summing over exponentially many rows)
statistical estimation / learning

(Estimating 101000 parameters? Nope.)
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Discrete Probability Distribution Review

How to Restrict the Complexity?

Restrict the space of probability distributions
We will make various independence assumptions.
Extreme assumption: X1, . . . ,Xd are mutually independent.

Definition
Discrete random variables X1, . . . ,Xd are mutually independent if their
joint probability mass function (PMF) factorizes as

p(x1,x2, . . . ,xd) = p(x1)p(x2) · · ·p(xd).

Note: We usually just write independent for “mutually independent”.
How many parameters to represent the joint distribution, assuming
independence?
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Discrete Probability Distribution Review

Assume Full Independence

How many parameters to represent the joint distribution?
Say p(Xi = 1) = θi , for i = 1, . . . ,d .
Clever representation: Since xi ∈ {0,1}, we can write

P(Xi = xi ) = θ
xi
i (1−θi )

1−xi .

Then by independence,

p(x1, . . . ,xd) =
d∏

i=1

θxii (1−θi )
1−xi

How many parameters?
d parameters needed to represent the joint.
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Discrete Probability Distribution Review

Conditional Interpretation of Independence

Suppose X and Y are independent, then

p(x | y) = p(x).

Proof:

p(x | y) =
p(x ,y)

p(y)

=
p(x)p(y)

p(y)
= p(x).

With full independence, we have no relationships among variables.
Information about one variable says nothing about any other variable.

Would mean diseases don’t have symptoms.
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Discrete Probability Distribution Review

Conditional Independence

Consider 3 events:
1 W = {The grass is wet}
2 S = {The road is slippery}
3 R = {It’s raining}

These events are certainly not independent.
Raining (R) =⇒ Grass is wet AND The road is slippery (W ∩S)
Grass is wet (W ) =⇒ More likely that the road is slippery (S)

Suppose we know that it’s raining.
Then, we learn that the grass is wet.
Does this tell us anything new about whether the road is slippery?

Once we know R , then W and S become independent.
This is called conditional independence, and we’ll denote it as

W ⊥ S | R.
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Discrete Probability Distribution Review

Conditional Independence

Definition
We say W and S are conditionally independent given R , denoted

W ⊥ S | R,

if the conditional joint factorizes as

p(w ,s | r) = p(w | r)p(s | r).

Also holds when W , S , and R represent sets of random variables.

David Rosenberg (New York University) DS-GA 1003 June 9, 2015 14 / 47



Discrete Probability Distribution Review

Example: Rainy, Slippery, Wet

Consider 3 events:
1 W = {The grass is wet}
2 S = {The road is slippery}
3 R = {It’s raining}

Represent joint distribution as

p(w ,s, r) = p(w ,s | r)p(r) (no assumptions so far)
= p(w | r)p(s | r)p(r) (assuming W ⊥ S | R)

How many parameters to specify the joint?
p(w | r) requires two parameters: one for r = 1 and one for r = 0.
p(s | r) requires two.
p(r) requires one parameter,

Full joint: 7 parameters. Conditional independence: 5 parameters.
Full independence: 3 parameters.
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Bayesian Networks

Bayesian Networks: Introduction

Bayesian Networks are

used to specify joint probability distributions that
have a particular factorization.

p(c ,h,a, i) = p(c)p(a)

×p(h | c,a)p(i | a)

With practice, one can read conditional independence relationships
directly from the graph.

From Percy Liang’s "Lecture 14: Bayesian networks II" slides from Stanford’s CS221, Autumn 2014.
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Bayesian Networks

Directed Graphs

A directed graph is a pair G = (V,E) , where
V= {1, . . . ,d} is a set of nodes and
E= {(s, t) | s, t ∈ V} is a set of directed edges.

4 5

2 3

1
Parents(5) = {3}
Parents(4) = {2,3}
Children(3) = {4,5}

Descendants(1) = {2,3,4,5}
NonDescendants(3) = {1,2}

KPM Figure 10.2(a).
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Bayesian Networks

Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no directed cycles.

DAG

4 5

2 3

1

Not a DAG

Every DAG has a topological ordering, in which parents have lower
numbers than their children.

http://www.geeksforgeeks.org/wp-content/uploads/SCC1.png and KPM Figure 10.2(a).
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Bayesian Networks

Bayesian Networks

Definition
A Bayesian network is a

DAG G = (V,E), where V= {1, . . . ,d}, and
a corresponding set of random variables X = {X1, . . . ,Xd }

where
the joint probability distribution over X factorizes as

p(x1, . . . ,xd) =
d∏

i=1

p(xi | xParents(i)).

Bayesian networks are also known as
directed graphical models, and
belief networks.
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Bayesian Networks

Bayesian Networks: Example

Consider the Bayesian network depicted below:

Y

X1X2 X3

X4

It implies the following factorization for the joint probability distribution:

p(x1,x2,x3,x4,y) = p(y)p(x1 | y)p(x2 | x1,y)p(x3 | x1,y)p(x4 | x3,y)

KPM Figure 10.2(b).
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Conditional Independencies

Bayesian Networks: “A Common Cause”

c

a b

p(a,b,c) = p(c)p(a | c)p(b | c)

Are a and b independent? (c=Rain, a=Slippery, b=Wet?)

p(a,b) =
∑
c

p(c)p(a | c)p(b | c),

which in general will not be equal to p(a)p(b).

From Bishop’s Pattern recognition and machine learning, Figure 8.15.
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Conditional Independencies

Bayesian Networks: “A Common Cause”

c

a b

p(a,b,c) = p(c)p(a | c)p(b | c)

Are a and b independent, conditioned on observing c? (c=Rain,
a=Slippery, b=Wet?)

p(a,b | c) = p(a,b,c)/p(c)

= p(a | c)p(b | c)

So a⊥ b | c .
From Bishop’s Pattern recognition and machine learning, Figure 8.16.
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Conditional Independencies

Bayesian Networks: “An Indirect Effect”

a c b

p(a,b,c) = p(a)p(c | a)p(b | c)

Are a and b independent? (Note: This is a Markov chain)
(e.g. a=raining, c=wet ground, b=mud on shoes)

p(a,b) =
∑
c

p(a,b,c)

= p(a)
∑
c

p(c | a)p(b | c)

So doesn’t factorize, thus not independent, in general.

From Bishop’s Pattern recognition and machine learning, Figure 8.17.
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Conditional Independencies

Bayesian Networks: “An Indirect Effect”

a c b

p(a,b,c) = p(a)p(c | a)p(b | c)

Are a and b independent after observing c?
(e.g. a=raining, c=wet ground, b=mud on shoes)

p(a,b | c) = p(a,b,c)/p(c)

= p(a)p(c | a)p(b | c)/p(c)

= p(a | c)p(b | c)

So a⊥ b | c .

From Bishop’s Pattern recognition and machine learning, Figure 8.18.
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Conditional Independencies

Bayesian Networks: “A Common Effect”

c

a b

p(a,b,c) = p(a)p(b)p(c | a,b)
Are a and b independent? (a=course difficulty, b=knowledge, c= grade)

p(a,b) =
∑
c

p(a)p(b)p(c | a,b)

= p(a)p(b)
∑
c

p(c | a,b)

= p(a)p(b)

So a⊥ b.

From Bishop’s Pattern recognition and machine learning, Figure 8.19.
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Conditional Independencies

Bayesian Networks: “A Common Effect” or “V-Structure”

c

a b

p(a,b,c) = p(a)p(b)p(c | a,b)

Are a and b independent, given observation of c? (a=course difficulty,
b=knowledge, c= grade)

p(a,b | c) = p(a)p(b)p(c | a,b)/p(c)

which does not factorize into p(a | c)p(b | c), in general.

From Bishop’s Pattern recognition and machine learning, Figure 8.20.
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Conditional Independencies

Conditional Independence from Graph Structure

In general, given 3 sets of nodes A, B , and C

How can we determine whether

A⊥ B | C?

There is a purely graph-theoretic notion of “d-separation” that is
equivalent to conditional independence.
Suppose we have observed C and we want to do inference on A.
We could ignore any evidence collected about B , where A⊥ B | C .
See KPM Section 10.5.1 for details.
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Conditional Independencies

Markov Blanket

Suppose we have a very large Bayesian network.
We’re interested in a single variable A, which we cannot observe.
To get maximal information about A, do we have to observe all other
variables?
No! We only need to observe the Markov blanket of A:

p(A | all other nodes) = p(A |MarkovBlanket(A)).

In a Bayesian network, the Markov blanket of A consists of

the parents of A
the children of A
the “co-parents” of A, i.e. the parents of the children of A

(See KPM Sec. 10.5.3 for details.)
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Conditional Independencies

Markov Blanket

Markov Blanket of A in a Bayesian Network:

From http://en.wikipedia.org/wiki/Markov_blanket: "Diagram of a Markov blanket" by Laughsinthestocks -
Licensed under CC0 via Wikimedia Commons
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When to use Bayesian Networks?

Bayesian Networks

Bayesian Networks are great when

you know something about the relationships between your variables, or
you will routinely need to make inferences with incomplete data.

Challenges:

The naive approach to inference doesn’t work beyond small scale.
Need more sophisticated algorithm:

exact inference
approximate inference
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Naive Bayes

Naive Bayes: A Generative Model for Classification

X=
{(

X1,X2,X3,X4) ∈ {0,1}4
)}

Y= {0,1} be a class label.

Consider the Bayesian network depicted below:

Y

X1 X2 X3 X4

BN structure implies joint distribution factors as:

p(x1,x2,x3,x4,y) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)p(x4 | y)

Features X1, . . . ,X4 are independent given the class label Y .
KPM Figure 10.2(a).

David Rosenberg (New York University) DS-GA 1003 June 9, 2015 31 / 47



Naive Bayes

Parameters for Naive Bayes

Generalize to d features.
Knowing the joint distribution means we need to know

p(y), p(x1 | y), . . .p(xd | y).

We could parameterize as:

P(Y = 1) = θy

P(Xi = 1 | Y = 1) = θi1

P(Xi = 1 | Y = 0) = θi0

=⇒ 1+2d parameters to characterize the joint distribution
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Naive Bayes

Parameterized Expression for Joint

Parameters:

P(Y = 1) = θy P(Xi = 1 | Y = 1) = θi1 P(Xi = 1 | Y = 0) = θi0

Joint distribution is

p(x1, . . .xd ,y)

= p(y)
n∏

i=1

p(xi | y)

= (θy )
y (1−θy )

1−y

×
n∏

i=1

(θi1)
yxi (1−θi1)

y(1−xi) (θi0)
(1−y)xi (1−θi0)

(1−y)(1−xi)
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Naive Bayes

Naive Bayes

Suppose we know all conditional distributions:

p(y), p(x1 | y), . . .p(xd | y)

We observe X = (X1, . . . ,Xd). What’s the prediction for Y ?
We have a full probability model

p(y ,x1, . . . ,xd) = p(y)p(x1, . . . ,xd | y) (no assumptions)

= p(y)
d∏

i=1

p(xi | y) (conditional independence)

We can use Bayes rule to compute anything we want...
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Naive Bayes

Posterior Class Probability

Let x = (x1, . . . ,xd), and apply Bayes rule:

p(y | x) =
p(y ,x)

p(x)
=

p(y)
∏d

i=1 p(xi | y)

p(x)

We know everything except p(x).
We can compute it explicitly:

p(x) =
∑

y∈{0,1}

p(x ,y) =
∑

y∈{0,1}

p(x |y)p(y)

So final predicted probability distribution is

p(y | x) =
p(y)

∏d
i=1 p(xi | y)∑

y∈{0,1} p(x |y)p(y)
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Naive Bayes

Dropping Normalization Constant

Consider p(y | x) as a distribution over y , for fixed x .

p(y | x) = p(y ,x)/p(x).

With x fixed, p(x) is a constant – let’s write it as k to make it clear:

p(y | x) = k−1p(y ,x)

=⇒ p(y | x) ∝ p(y ,x)

How to recover value of k? p(y | x) must be a distribution on y :∑
y∈{0,1}

p(y | x) = k−1
∑

y∈{0,1}

p(y ,x) = 1

=⇒ k =
∑

y∈{0,1}

p(y ,x)

So we can always recover the normalizing constant whenever we want.
Often no need to keep track of it.
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Naive Bayes

Naive Bayes and Logistic Regression

Recall the logistic regression prediction function is of the form

x 7→ p(Y = 1 | x) =
1

1+ exp(−wT x)
,

for some parameter vector w ∈ Rd .

Theorem
If p(y ,x) is any Naive Bayes model with binary x and y , the prediction
function

x 7→ p(Y = 1 | x)

corresponds to logistic regression, for some w ∈ Rd .

Proof: Homework.
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Naive Bayes

Naive Bayes vs Logistic Regression

Naive Bayes is a model for the joint distribution p(y ,x).

We can sample (x ,y) pairs from this distribution.
Models of the joint distribution are called generative models.

Logistic regression is directly modeling the conditional distribution

p(y | x).

No model for the features x = (x1, . . . ,xd ).
Conditional probability models are called discriminative models.

Logistic regression is a specialist in the conditional distribution.
Naive Bayes is doing more!
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Naive Bayes

Naive Bayes vs Logistic Regression

Missing data is no problem for Naive Bayes.
Suppose we’re missing X1 and X2 from the input vector.
Just predict with

P(y | x3, . . .xd) ∝ p(y ,x3, . . . ,xd)

=
∑

x1,x2∈{0,1}

p(y ,x)

For logistic regression? No natural way to predict with missing
features.
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Naive Bayes

Naive Bayes vs Logistic Regression

Logistic regression handles binary or continuous features seamlessly.
For naive Bayes, you need a different family of conditional
distributions, e.g.

p(xi | y) =N
(
xi | µiy ,σ

2
iy

)
Wasted effort to model all features if you only care about p(y | x)?
Suppose we’re missing X1 and X2 from the input vector.
Just predict with

P(y | x3, . . .xd) ∝ p(y ,x3, . . . ,xd)

=
∑

x1,x2∈{0,1}

p(y ,x)

No natural method for missing features with logistic regression.
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Naive Bayes

Easy Estimators for Naive Bayes

Training set D=
{(

x1,y1
)
, . . .(xn,yn)

}
.

There are obvious “plug-in” estimators for the Naive Bayes model:

P(Y = 1) ≈ θ̂y =
1
n

n∑
i=1

1(y i = 1)

P(Xi = 1 | Y = 1) ≈ θ̂i1 =

∑n
j=1 1(y

j = 1 and x ji = 1)∑n
j=1 1(y j = 1)

P(Xi = 1 | Y = 0) = θ̂i0 =

∑n
j=1 1(y

j = 0 and x ji = 1)∑n
j=1 1(y j = 0)
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Naive Bayes

Maximum Likelihood Estimation for Naive Bayes

Training set D=
{(

x1,y1
)
, . . .(xn,yn)

}
.

More principled: find the MLE for the Naive Bayes model.
The log-likelihood objective function is

J(θ) =
n∑

i=1

logp(y i ,x i ),

where we found the likelihood for a single point (x ,y) is

p(x ,y) = (θy )
y (1−θy )

1−y

×
n∏

i=1

(θi1)
yxi (1−θi1)

y(1−xi)

×
n∏

i=1

(θi0)
(1−y)xi (1−θi0)

(1−y)(1−xi)

Theorem: MLE is exactly the plug-in estimator.
Proof: Optional Homework.
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Naive Bayes

Class Prediction

If we want to predict a single class, we would use

y∗ = argmax
y

p(y | x).

One approach to this is to write

p(Y = 1 | x)
p(Y = 0 | x)

=
p(Y = 1,x)/p(x)
p(Y = 0,x)/p(x)

=
p(Y = 1,x)
p(Y = 0,x)

=
p(Y = 1)

∏d
i=1 p(xi | Y = 1)

p(Y = 0)
∏d

i=1 p(xi | Y = 0)

=
p(Y = 1)
p(Y = 0)

d∏
i=1

p(xi | Y = 1)
p(xi | Y = 0)

Compare ratio to 1 to get prediction.
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Markov Models

Markov Chain Model

A Markov chain model has structure:

x1 x2 x3

· · ·

p(x1,x2,x3, . . .) = p(x1)p(x2 | x1)p(x3 | x2) · · ·

Conditional distributions p(xi | xi−1) is called the transition model.
When conditional distribution independent of i , called
time-homogeneous.
4-state transition model for Xi ∈ {S1,S2,S3,S4}:

S1

0.3 0.5

0.7 0.4 0.5

0.6

0.9

0.1

S2 S3 S4

KPM Figure 10.3(a) and Koller and Friedman’s Probabilistic Graphical Models Figure 6.04.
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Markov Models

Hidden Markov Model

A hidden Markov model (HMM) has structure:

x1 x2 xT

z1 z2 zT

p(z1,z2,z3, . . .) = p(z1)
T∏

t=2

p(zt | zt−1)︸ ︷︷ ︸
Transition Model

T∏
t=1

p(xt | zt)︸ ︷︷ ︸
Observation Model

At deployment time, we typically only observe X1, . . . ,XT .
Want to infer Z1, . . . ,ZT .
e.g. Want to most likely sequence (Z1, . . . ,ZT ) . (Use Viterbi
algorithm.)

KPM Figure 10.4
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Markov Models

Maximum Entropy Markov Model

A maximum entropy Markov model (MEMM) has structure:

p(y1 . . . ,y5 | x) = p(y0)

5∏
t=1

p(yt | yt−1,x)︸ ︷︷ ︸
Conditional Transition Model

At deployment time, we only observe X1, . . . ,XT .
This is a conditional model. (And not a generative model).

Koller and Friedman’s Probabilistic Graphical Models Figure 20.A.1.

David Rosenberg (New York University) DS-GA 1003 June 9, 2015 46 / 47



Markov Models

Maximum Entropy Markov Model

The MEMM transition model takes the following form:

p(yi |yi−1,x) ∝ exp

(∑
k

λk fk(yi−1,yi )+
∑
r

µrgr (yi ,x)

)
The functions fk and gr are feature functions.

Suppose Y ’s represent parts-of-speech; X ’s represent words.
Could have

gr (yi ,x) =

{
1 if yi = "NOUN" and xi = "apple"
0 otherwise

For the “transition features”, typical would be

fk(yi−1,yi ) =

{
1 if (yi−1,yi ) = (ADJ,NOUN)
0 otherwise.
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