Bayesian Networks

David Rosenberg

New York University

June 9, 2015
Probabilistic Reasoning

- **Represent** system of interest by a set of random variables
 \[(X_1, \ldots, X_d)\].

- Suppose by research or machine learning, we get a joint probability distribution
 \[p(x_1, \ldots, x_d)\].

- We’d like to be able to do **inference** on this model – essentially, answer queries:
 1. What is the most likely value of \(X_1\)?
 2. What is the most likely value of \(X_1\), given we’ve observed \(X_2 = 1\)?
 3. Distribution of \((X_1, X_2)\) given observation of \((X_3 = x_3, \ldots, X_d = x_d)\)?
Example: Medical Diagnosis

- **Variables for each symptom**
 - fever, cough, fast breathing, shaking, nausea, vomiting

- **Variables for each disease**
 - pneumonia, flu, common cold, bronchitis, tuberculosis

- Diagnosis is performed by **inference** in the model:

\[p(\text{pneumonia} = 1 \mid \text{cough} = 1, \text{fever} = 1, \text{vomiting} = 0) \]

- The QMR-DT (Quick Medical Reference - Decision Theoretic) has
 - 600 diseases
 - 4000 symptoms

Example from David Sontag’s *Inference and Representation*, Lecture 1.
Some Notation

- This lecture we’ll only be considering discrete random variables.
- Capital letters X_1, \ldots, X_d, Y, etc. denote random variables.
- Lower case letters x_1, \ldots, x_n, y denote the values taken.
- Probability that $X_1 = x_1$ and $X_2 = x_2$ will be denoted
 \[P(X_1 = x_1, X_2 = x_2). \]
- We’ll generally write things in terms of the probability mass function:
 \[p(x_1, x_2, \ldots, x_d) := P(X_1 = x_1, X_2 = x_2, \ldots, X_d = x_d) \]
Let’s consider the case of discrete random variables. Conceptually, everything can be represented with probability tables.

Variables

- Temperature $T \in \{\text{hot, cold}\}$
- Weather $W \in \{\text{sun, rain}\}$

<table>
<thead>
<tr>
<th>t</th>
<th>$p(t)$</th>
<th>w</th>
<th>$p(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

These are the marginal probability distributions.

To do reasoning, we need the joint probability distribution.

Based on David Sontag’s *DS-GA 1003 Lectures, Spring 2014*, Lecture 10.
A joint probability distribution for T and W is given by

<table>
<thead>
<tr>
<th>t</th>
<th>w</th>
<th>$p(t,w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

A valid probability distribution if

1. $\forall t, w: p(t, w) \geq 0$
2. $\sum_{t, w} p(t, w) = 1$.

Based on David Sontag’s DS-GA 1003 Lectures, Spring 2014, Lecture 10.
Conditional Distributions From the Joint Distribution

- We observe $T = \text{hot}$. What’s the conditional distribution of W?

$$p(w \mid T = \text{hot}) = ?$$

- Method:
 1. Find entries in joint distribution table where $T = \text{hot}$.

<table>
<thead>
<tr>
<th>t</th>
<th>w</th>
<th>$p(t, w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
</tbody>
</table>

 2. Renormalize to get conditional probability.

<table>
<thead>
<tr>
<th>t</th>
<th>w</th>
<th>$p(t, w)$</th>
<th>$p(w \mid T = \text{hot})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
<td>0.4/0.5 = 0.8</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
<td>0.1/0.5 = 0.2</td>
</tr>
</tbody>
</table>
Conditional Distributions From the Joint Distribution

Definition

The **conditional probability** for \(w \) given \(t \) is

\[
p(w \mid t) = \frac{p(w, t)}{p(t)}.
\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(w)</th>
<th>(p(t, w))</th>
<th>(p(w \mid T = \text{hot}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
<td>(0.4/0.5 = 0.8)</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
<td>(0.1/0.5 = 0.2)</td>
</tr>
</tbody>
</table>
Consider random variables $X_1, \ldots, X_d \in \{0, 1\}$.

How many parameters do we need to represent the joint distribution?

Joint probability table has 2^d rows.

For QMR-DT, that’s $2^{4600} > 10^{1000}$ rows.

That’s not going to happen.

Having exponentially many parameters is a problem for

- storage
- computation (inference is summing over exponentially many rows)
- statistical estimation / learning
 - (Estimating 10^{1000} parameters? Nope.)
How to Restrict the Complexity?

- Restrict the space of probability distributions
- We will make various independence assumptions.
- Extreme assumption: X_1, \ldots, X_d are mutually independent.

Definition

Discrete random variables X_1, \ldots, X_d are **mutually independent** if their joint probability mass function (PMF) factorizes as

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d).$$

- Note: We usually just write independent for “mutually independent”.
- How many parameters to represent the joint distribution, assuming independence?
Assume Full Independence

- How many parameters to represent the joint distribution?
- Say $p(X_i = 1) = \theta_i$, for $i = 1, \ldots, d$.
- **Clever representation**: Since $x_i \in \{0, 1\}$, we can write
 \[
P(X_i = x_i) = \theta_i^{x_i} (1 - \theta_i)^{1-x_i}.
\]
- Then by independence,
 \[
p(x_1, \ldots, x_d) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1-x_i}
\]
- How many parameters?
- d parameters needed to represent the joint.
Suppose X and Y are independent, then

$$p(x \mid y) = p(x).$$

Proof:

$$p(x \mid y) = \frac{p(x, y)}{p(y)} = \frac{p(x)p(y)}{p(y)} = p(x).$$

With full independence, we have no relationships among variables.
Information about one variable says nothing about any other variable.
Would mean diseases don’t have symptoms.
Consider 3 events:

1. $W = \{\text{The grass is wet}\}$
2. $S = \{\text{The road is slippery}\}$
3. $R = \{\text{It’s raining}\}$

These events are certainly not independent.

- Raining (R) \implies Grass is wet AND The road is slippery ($W \cap S$)
- Grass is wet (W) \implies More likely that the road is slippery (S)

Suppose we know that it’s raining.

- Then, we learn that the grass is wet.
- Does this tell us anything new about whether the road is slippery?

Once we know R, then W and S become independent.

This is called conditional independence, and we’ll denote it as

$$W \perp S \mid R.$$
Conditional Independence

Definition

We say W and S are **conditionally independent** given R, denoted

$$W \perp S \mid R,$$

if the conditional joint factorizes as

$$p(w, s \mid r) = p(w \mid r)p(s \mid r).$$

Also holds when W, S, and R represent **sets of random variables**.
Example: Rainy, Slippery, Wet

- Consider 3 events:
 1. \(W = \{ \text{The grass is wet} \} \)
 2. \(S = \{ \text{The road is slippery} \} \)
 3. \(R = \{ \text{It’s raining} \} \)

- Represent joint distribution as

\[
p(w, s, r) = p(w, s | r)p(r) \quad \text{(no assumptions so far)}
\]
\[
= p(w | r)p(s | r)p(r) \quad \text{(assuming } W \perp S | R)\]

- How many parameters to specify the joint?
 - \(p(w | r) \) requires two parameters: one for \(r = 1 \) and one for \(r = 0 \).
 - \(p(s | r) \) requires two.
 - \(p(r) \) requires one parameter,

Bayesian Networks: Introduction

- Bayesian Networks are
 - used to specify joint probability distributions that
 - have a particular factorization.

\[
p(c, h, a, i) = p(c)p(a) \times p(h | c, a)p(i | a)
\]

- With practice, one can read conditional independence relationships directly from the graph.

From Percy Liang's "Lecture 14: Bayesian networks II" slides from Stanford’s CS221, Autumn 2014.
Directed Graphs

A directed graph is a pair $G = (\mathcal{V}, \mathcal{E})$, where

- $\mathcal{V} = \{1, \ldots, d\}$ is a set of nodes and
- $\mathcal{E} = \{(s, t) \mid s, t \in \mathcal{V}\}$ is a set of directed edges.

Parents(5) = \{3\}
Parents(4) = \{2, 3\}
Children(3) = \{4, 5\}
Descendants(1) = \{2, 3, 4, 5\}
NonDescendants(3) = \{1, 2\}

KPM Figure 10.2(a).
A DAG is a directed graph with no directed cycles.

Every DAG has a topological ordering, in which parents have lower numbers than their children.

http://www.geeksforgeeks.org/wp-content/uploads/SCC1.png and KPM Figure 10.2(a).
Bayesian Networks

Definition

A **Bayesian network** is a

- DAG $G = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, \ldots, d\}$, and
- a corresponding set of random variables $X = \{X_1, \ldots, X_d\}$

where

- the joint probability distribution over X factorizes as

$$p(x_1, \ldots, x_d) = \prod_{i=1}^{d} p(x_i | x_{\text{Parents}(i)}).$$

Bayesian networks are also known as

- **directed graphical models**, and
- **belief networks**.
Bayesian Networks: Example

Consider the Bayesian network depicted below:

\[
p(x_1, x_2, x_3, x_4, y) = p(y)p(x_1 | y)p(x_2 | x_1, y)p(x_3 | x_1, y)p(x_4 | x_3, y)
\]

KPM Figure 10.2(b).
Bayesian Networks: “A Common Cause”

\[
p(a, b, c) = p(c)p(a | c)p(b | c)
\]

Are \(a\) and \(b\) independent? (\(c=\text{Rain}, a=\text{Slippery}, b=\text{Wet}\)?)

\[
p(a, b) = \sum_c p(c)p(a | c)p(b | c),
\]

which in general will not be equal to \(p(a)p(b)\).

From Bishop’s *Pattern recognition and machine learning*, Figure 8.15.
Bayesian Networks: “A Common Cause”

Are a and b independent, conditioned on observing c? (c=Rain, a=Slippery, b=Wet?)

\[
p(a, b \mid c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a \mid c)p(b \mid c)}{p(c)}
\]

So $a \perp b \mid c$.

From Bishop’s *Pattern recognition and machine learning*, Figure 8.16.
Bayesian Networks: “An Indirect Effect”

\[p(a, b, c) = p(a)p(c | a)p(b | c) \]

Are \(a \) and \(b \) independent? (Note: This is a Markov chain) (e.g. \(a=\text{raining}, \ c=\text{wet ground}, \ b=\text{mud on shoes} \))

\[
\begin{align*}
p(a, b) &= \sum_c p(a, b, c) \\
&= p(a) \sum_c p(c | a)p(b | c)
\end{align*}
\]

So doesn’t factorize, thus not independent, in general.

From Bishop’s *Pattern recognition and machine learning*, Figure 8.17.
Bayesian Networks: “An Indirect Effect”

\[
p(a, b, c) = p(a)p(c | a)p(b | c)
\]

Are \(a \) and \(b \) independent after observing \(c \)? (e.g. \(a \)=raining, \(c \)=wet ground, \(b \)=mud on shoes)

\[
p(a, b | c) = \frac{p(a, b, c)}{p(c)}
\]

\[
= \frac{p(a)p(c | a)p(b | c)}{p(c)}
\]

\[
= p(a | c)p(b | c)
\]

So \(a \perp b | c \).

From Bishop’s *Pattern recognition and machine learning*, Figure 8.18.
Bayesian Networks: “A Common Effect”

\[p(a, b, c) = p(a)p(b)p(c \mid a, b) \]

Are \(a \) and \(b \) independent? (\(a \)=course difficulty, \(b \)=knowledge, \(c \)= grade)

\[
\begin{align*}
p(a, b) &= \sum_c p(a)p(b)p(c \mid a, b) \\
&= p(a)p(b)\sum_c p(c \mid a, b) \\
&= p(a)p(b)
\end{align*}
\]

So \(a \perp b \).

From Bishop’s *Pattern recognition and machine learning*, Figure 8.19.
Bayesian Networks: “A Common Effect” or “V-Structure”

Are \(a \) and \(b \) independent, given observation of \(c \)? (\(a=\)course difficulty, \(b=\)knowledge, \(c=\) grade)

\[
p(a, b | c) = p(a)p(b)p(c | a, b) / p(c)
\]

which does not factorize into \(p(a | c)p(b | c) \), in general.

From Bishop’s *Pattern recognition and machine learning*, Figure 8.20.
In general, given 3 sets of nodes \(A, B, \) and \(C \)

How can we determine whether

\[
A \perp B \mid C
\]

There is a purely graph-theoretic notion of “\textit{d-separation}” that is equivalent to conditional independence.

Suppose we have observed \(C \) and we want to do inference on \(A \).

We could ignore any evidence collected about \(B \), where \(A \perp B \mid C \).

See KPM Section 10.5.1 for details.
Markov Blanket

- Suppose we have a very large Bayesian network.
- We’re interested in a single variable A, which we cannot observe.
- To get maximal information about A, do we have to observe all other variables?
- No! We only need to observe the Markov blanket of A:

$$p(A \mid \text{all other nodes}) = p(A \mid \text{MarkovBlanket}(A)).$$

- In a Bayesian network, the Markov blanket of A consists of
 - the parents of A
 - the children of A
 - the “co-parents” of A, i.e. the parents of the children of A

(See KPM Sec. 10.5.3 for details.)
Markov Blanket

Markov Blanket of A in a Bayesian Network:

From http://en.wikipedia.org/wiki/Markov_blanket: "Diagram of a Markov blanket" by Laughsinthestocks - Licensed under CC0 via Wikimedia Commons
Bayesian Networks are great when

- you know something about the relationships between your variables, or
- you will routinely need to make inferences with incomplete data.

Challenges:

- The naive approach to inference doesn’t work beyond small scale.
- Need more sophisticated algorithm:
 - exact inference
 - approximate inference
Naive Bayes: A Generative Model for Classification

- \(\mathcal{X} = \left\{ (x_1, x_2, x_3, x_4) \in \{0, 1\}^4 \right\} \) \(\mathcal{Y} = \{0, 1\} \) be a class label.
- Consider the Bayesian network depicted below:

 ![Bayesian Network Diagram](image)

 - BN structure implies joint distribution factors as:

 \[
 p(x_1, x_2, x_3, x_4, y) = p(y)p(x_1 \mid y)p(x_2 \mid y)p(x_3 \mid y)p(x_4 \mid y)
 \]

 - Features \(X_1, \ldots, X_4 \) are independent given the class label \(Y \).

KPM Figure 10.2(a).
Parameters for Naive Bayes

- Generalize to d features.
- Knowing the joint distribution means we need to know $p(y), p(x_1 \mid y), \ldots, p(x_d \mid y)$.

- We could parameterize as:

$$
\begin{align*}
P(Y = 1) &= \theta_y \\
P(X_i = 1 \mid Y = 1) &= \theta_{i1} \\
P(X_i = 1 \mid Y = 0) &= \theta_{i0}
\end{align*}
$$

\implies 1 + 2d parameters to characterize the joint distribution
Parameterized Expression for Joint

- **Parameters:**

\[P(Y = 1) = \theta_y \quad P(X_i = 1 \mid Y = 1) = \theta_{i1} \quad P(X_i = 1 \mid Y = 0) = \theta_{i0} \]

- **Joint distribution is**

\[
p(x_1, \ldots, x_d, y) \\
= p(y) \prod_{i=1}^{n} p(x_i \mid y) \\
= (\theta_y)^y (1 - \theta_y)^{1-y} \\
\times \prod_{i=1}^{n} (\theta_{i1})^{y x_i} (1 - \theta_{i1})^{(1-y) x_i} (\theta_{i0})^{(1-y) (1-x_i)} (1 - \theta_{i0})^{(1-y) (1-x_i)}
\]
Suppose we know all conditional distributions:

\[p(y), \, p(x_1 \mid y), \ldots, \, p(x_d \mid y) \]

We observe \(X = (X_1, \ldots, X_d) \). What’s the prediction for \(Y \)?

We have a full probability model

\[
p(y, x_1, \ldots, x_d) = p(y)p(x_1, \ldots, x_d \mid y) \quad \text{(no assumptions)}
\]

\[
= p(y) \prod_{i=1}^{d} p(x_i \mid y) \quad \text{(conditional independence)}
\]

We can use Bayes rule to compute anything we want...
Posterior Class Probability

- Let \(x = (x_1, \ldots, x_d) \), and apply Bayes rule:

\[
p(y \mid x) = \frac{p(y, x)}{p(x)} = \frac{p(y) \prod_{i=1}^{d} p(x_i \mid y)}{p(x)}
\]

- We know everything except \(p(x) \).
- We can compute it explicitly:

\[
p(x) = \sum_{y \in \{0, 1\}} p(x, y) = \sum_{y \in \{0, 1\}} p(x \mid y) p(y)
\]

- So final predicted probability distribution is

\[
p(y \mid x) = \frac{p(y) \prod_{i=1}^{d} p(x_i \mid y)}{\sum_{y \in \{0, 1\}} p(x \mid y) p(y)}
\]
Consider $p(y \mid x)$ as a distribution over y, for fixed x.

$$p(y \mid x) = \frac{p(y, x)}{p(x)}.$$

With x fixed, $p(x)$ is a constant – let’s write it as k to make it clear:

$$p(y \mid x) = k^{-1}p(y, x)$$

$\implies p(y \mid x) \propto p(y, x)$

How to recover value of k? $p(y \mid x)$ must be a distribution on y:

$$\sum_{y \in \{0, 1\}} p(y \mid x) = k^{-1} \sum_{y \in \{0, 1\}} p(y, x) = 1$$

$\implies k = \sum_{y \in \{0, 1\}} p(y, x)$

So we can always recover the normalizing constant whenever we want.

Often no need to keep track of it.
Recall the logistic regression prediction function is of the form

\[x \mapsto p(Y = 1 \mid x) = \frac{1}{1 + \exp(-w^T x)}, \]

for some parameter vector \(w \in \mathbb{R}^d \).

Theorem

If \(p(y, x) \) is any Naive Bayes model with binary \(x \) and \(y \), the prediction function

\[x \mapsto p(Y = 1 \mid x) \]

corresponds to logistic regression, for some \(w \in \mathbb{R}^d \).

Proof: Homework.
Naive Bayes vs Logistic Regression

- Naive Bayes is a model for the joint distribution \(p(y, x) \).
 - We can sample \((x, y)\) pairs from this distribution.
 - Models of the joint distribution are called **generative models**.
- Logistic regression is directly modeling the conditional distribution
 \[p(y \mid x). \]
 - No model for the features \(x = (x_1, \ldots, x_d) \).
 - Conditional probability models are called **discriminative models**.
- Logistic regression is a specialist in the conditional distribution.
- Naive Bayes is doing more!
Naive Bayes vs Logistic Regression

- **Missing data** is no problem for Naive Bayes.
- Suppose we’re missing X_1 and X_2 from the input vector.
- Just predict with

$$P(y \mid x_3, \ldots, x_d) \propto p(y, x_3, \ldots, x_d)$$

$$= \sum_{x_1, x_2 \in \{0, 1\}} p(y, x)$$

- For logistic regression? No natural way to predict with missing features.
Naive Bayes vs Logistic Regression

- Logistic regression handles binary or continuous features seamlessly.
- For naive Bayes, you need a different family of conditional distributions, e.g.
 \[p(x_i \mid y) = \mathcal{N}(x_i \mid \mu_{iy}, \sigma_{iy}^2) \]
- Wasted effort to model all features if you only care about \(p(y \mid x) \)?
- Suppose we’re missing \(X_1 \) and \(X_2 \) from the input vector.
- Just predict with
 \[
 \mathbb{P}(y \mid x_3, \ldots, x_d) \propto p(y, x_3, \ldots, x_d) \\
 = \sum_{x_1, x_2 \in \{0,1\}} p(y, x)
 \]
- No natural method for missing features with logistic regression.
Easy Estimators for Naive Bayes

- Training set $\mathcal{D} = \{(x^1, y^1), \ldots, (x^n, y^n)\}$.
- There are obvious “plug-in” estimators for the Naive Bayes model:

$$P(Y = 1) \approx \hat{\theta}_y = \frac{1}{n} \sum_{i=1}^{n} 1(y^i = 1)$$

$$P(X_i = 1 \mid Y = 1) \approx \hat{\theta}_{i1} = \frac{\sum_{j=1}^{n} 1(y^j = 1 \text{ and } x^i_j = 1)}{\sum_{j=1}^{n} 1(y^j = 1)}$$

$$P(X_i = 1 \mid Y = 0) = \hat{\theta}_{i0} = \frac{\sum_{j=1}^{n} 1(y^j = 0 \text{ and } x^i_j = 1)}{\sum_{j=1}^{n} 1(y^j = 0)}$$
Training set \(\mathcal{D} = \{(x^1, y^1), \ldots, (x^n, y^n)\} \).

More principled: find the MLE for the Naive Bayes model.

The log-likelihood objective function is

\[
J(\theta) = \sum_{i=1}^{n} \log p(y^i, x^i),
\]

where we found the likelihood for a single point \((x, y)\) is

\[
p(x, y) = (\theta_y)^y (1-\theta_y)^{1-y} \\
\times \prod_{i=1}^{n} (\theta_{i1})^{y x_i} (1-\theta_{i1})^{y(1-x_i)} \\
\times \prod_{i=1}^{n} (\theta_{i0})^{(1-y)x_i} (1-\theta_{i0})^{(1-y)(1-x_i)}
\]

Theorem: MLE is exactly the plug-in estimator.

Proof: Optional Homework.
Class Prediction

- If we want to predict a single class, we would use

\[y^* = \arg \max_y p(y \mid x). \]

- One approach to this is to write

\[
\frac{p(Y = 1 \mid x)}{p(Y = 0 \mid x)} = \frac{p(Y = 1, x)/p(x)}{p(Y = 0, x)/p(x)} = \frac{p(Y = 1, x)}{p(Y = 0, x)}
\]

\[
= \frac{p(Y = 1) \prod_{i=1}^{d} p(x_i \mid Y = 1)}{p(Y = 0) \prod_{i=1}^{d} p(x_i \mid Y = 0)}
\]

\[
= \frac{p(Y = 1)}{p(Y = 0)} \prod_{i=1}^{d} \frac{p(x_i \mid Y = 1)}{p(x_i \mid Y = 0)}
\]

- Compare ratio to 1 to get prediction.
A Markov chain model has structure:

\[p(x_1, x_2, x_3, \ldots) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \ldots \]

- Conditional distributions \(p(x_i \mid x_{i-1}) \) is called the transition model.
- When conditional distribution independent of \(i \), called time-homogeneous.
- 4-state transition model for \(X_i \in \{S_1, S_2, S_3, S_4\} \):

KPM Figure 10.3(a) and Koller and Friedman’s *Probabilistic Graphical Models* Figure 6.04.
Hidden Markov Model

- A hidden Markov model (HMM) has structure:

\[p(z_1, z_2, z_3, \ldots) = p(z_1) \prod_{t=2}^{T} p(z_t | z_{t-1}) \prod_{t=1}^{T} p(x_t | z_t) \]

\(\text{Transition Model} \quad \text{Observation Model} \)

- At deployment time, we typically only observe \(X_1, \ldots, X_T \).
- Want to infer \(Z_1, \ldots, Z_T \).
- e.g. Want to most likely sequence \((Z_1, \ldots, Z_T) \). (Use Viterbi algorithm.)
A maximum entropy Markov model (MEMM) has structure:

\[
p(y_1 \ldots, y_5 \mid x) = p(y_0) \prod_{t=1}^{5} p(y_t \mid y_{t-1}, x)
\]

At deployment time, we only observe \(X_1, \ldots, X_T\).

This is a conditional model. (And not a generative model).

Koller and Friedman’s *Probabilistic Graphical Models* Figure 20.A.1.
The MEMM transition model takes the following form:

\[
p(y_i|y_{i-1}, x) \propto \exp\left(\sum_k \lambda_k f_k(y_{i-1}, y_i) + \sum_r \mu_r g_r(y_i, x) \right)
\]

The functions \(f_k \) and \(g_r \) are **feature functions**.

Suppose \(Y \)'s represent parts-of-speech; \(X \)'s represent words.

Could have

\[
g_r(y_i, x) = \begin{cases}
1 & \text{if } y_i = "\text{NOUN}" \text{ and } x_i = "\text{apple}" \\
0 & \text{otherwise}
\end{cases}
\]

For the "transition features", typical would be

\[
f_k(y_{i-1}, y_i) = \begin{cases}
1 & \text{if } (y_{i-1}, y_i) = (\text{ADJ}, \text{NOUN}) \\
0 & \text{otherwise.}
\end{cases}
\]