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Introduction

Probabilistic Reasoning

@ Represent system of interest by a set of random variables
(X1,...,Xq).

@ Suppose by research or machine learning, we get a joint probability
distribution

p(x1,...,Xxq).

o We'd like to be able to do inference on this model — essentially,
answer queries:

© What is the most likely of value X;?
@ What is the most likely of value X, given we've observed X, =17
© Distribution of (X1, X5) given observation of (X3 =x3,...,Xq =xg¢)7
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Introduction

Example: Medical Diagnosis

@ Variables for each symptom

o fever, cough, fast breathing, shaking, nausea, vomiting
@ Variables for each disease

e pneumonia, flu, common cold, bronchitis, tuberculosis

@ Diagnosis is performed by inference in the model:
p(pneumonia =1 | cough = 1, fever = 1, vomiting = 0)

e The QMR-DT (Quick Medical Reference - Decision Theoretic) has

e 600 diseases
e 4000 symptoms

Example from David Sontag's Inference and Representation, Lecture 1.
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Discrete Probability Distribution Review

Some Notation

This lecture we'll only be considering discrete random variables.
Capital letters Xy,..., Xy, Y, etc. denote random variables.
Lower case letters xi, ..., xp, y denote the values taken.
Probability that X; = x; and X5 = x> will be denoted

P(X1 =x1,Xo =x2).

We'll generally write things in terms of the probability mass function:

p(xi,x2,....xq) =P (X1 =x1, X2 =x2,..., Xqg = Xqg)
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Representing Probability Distributions

Let's consider the case of discrete random variables.

Conceptually, everything can be represented with probability tables.

Variables

e Temperature T € {hot, cold}
o Weather W & {sun, rain}

Lt [p()] [ w [pw)]
hot | 0.5 sun | 0.6
cold | 0.5 rain | 0.4

These are the marginal probability distributions.

To do reasoning, we need the joint probability distribution.

Based on David Sontag’'s DS-GA 1003 Lectures, Spring 2014, Lecture 10.
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Joint Probability Distributions

@ A joint probability distribution for T and W is given by

Lt | w [pltw)]
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3

o A valid probability distribution if

o Vt,w: p(t,w) >0
° Ztywp(t, w)=1.

Based on David Sontag’'s DS-GA 1003 Lectures, Spring 2014, Lecture 10.
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Conditional Distributions From the Joint Distribution

o We observe T = hot. What's the conditional distribution of W?
p(w| T =hot) =7

o Method:
@ Find entries in joint distribution table where T = hot.
[ [ w [plew)]

hot | sun 0.4
hot | rain 0.1

@ Renormalize to get conditional probability.

’ t ‘ w ‘p(t,w)‘p(WIT:hot)‘
hot | sun 0.4 0.4/05=0.8
hot | rain 0.1 0.1/0.5=0.2
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Conditional Distributions From the Joint Distribution

Definition
The conditional probability for w given t is

p(wyt)_

plw|t) = D)

’ t ‘ w ‘p(t,w)‘p(WIT:hot)‘
hot | sun 0.4 0.4/05=0.8
hot | rain 0.1 0.1/0.5=0.2
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Representing Joint Distributions

Consider random variables Xy,..., Xy €{0,1}.

How many parameters do we need to represent the joint distribution?
Joint probability table has 29 rows.

For QMR-DT, that's 24690 > 101000 s,

That's not going to happen.

Having exponentially many parameters is a problem for

e storage
e computation (inference is summing over exponentially many rows)
o statistical estimation / learning

o (Estimating 101090 parameters? Nope.)
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How to Restrict the Complexity?

@ Restrict the space of probability distributions

@ We will make various independence assumptions.

@ Extreme assumption: Xi,..., Xy are mutually independent.
Definition
Discrete random variables Xi,..., Xy are mutually independent if their

joint probability mass function (PMF) factorizes as

plx1,x2,...,xq) = p(xa)p(x2) -+ p(xq).

@ Note: We usually just write independent for “mutually independent”.

@ How many parameters to represent the joint distribution, assuming
independence?
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Discrete Probability Distribution Review

Assume Full Independence

@ How many parameters to represent the joint distribution?
@ Say p(Xj=1)=0;, fori=1,...,d.
@ Clever representation: Since x; € {0,1}, we can write
P(X; =x;) =07 (1—6;)' .

@ Then by independence,

d

p(x1,....xq) = Hef" (1—0,)t ™

i=1
@ How many parameters?
@ d parameters needed to represent the joint.
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Discrete Probability Distribution Review

Conditional Interpretation of Independence

@ Suppose X and Y are independent, then

p(x|ly)=p(x).
@ Proof:

p(x,y)
ply)
p(x)

p(y)

p(xly) =

@ With full independence, we have no relationships among variables.
@ Information about one variable says nothing about any other variable.

o Would mean diseases don't have symptoms.
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Discrete Probability Distribution Review

Conditional Independence

@ Consider 3 events:
@ W ={The grass is wet}
@ S ={The road is slippery}
© R ={lIt's raining}
@ These events are certainly not independent.

e Raining (R) = Grass is wet AND The road is slippery (WNS)
o Grass is wet (W) = More likely that the road is slippery (S)

Suppose we know that it’s raining.

o Then, we learn that the grass is wet.
o Does this tell us anything new about whether the road is slippery?

Once we know R, then W and S become independent.

This is called conditional independence, and we'll denote it as
WL1S|R.
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Discrete Probability Distribution Review

Conditional Independence

Definition
We say W and S are conditionally independent given R, denoted

WL1S|R,

if the conditional joint factorizes as

plw,s|r)=p(w|r)p(s|r).

Also holds when W, S, and R represent sets of random variables.
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Example: Rainy, Slippery, Wet

o Consider 3 events:

@ W ={The grass is wet}
@ S ={The road is slippery}
© R ={It's raining}

@ Represent joint distribution as

plw,s,.r) = plw,s|r)p(r) (no assumptions so far)
= plw|r)p(s]|r)p(r) (assuming W L S| R)

@ How many parameters to specify the joint?
o p(w|r) requires two parameters: one for r =1 and one for r =0.
e p(s|r) requires two.
e p(r) requires one parameter,
o Full joint: 7 parameters. Conditional independence: 5 parameters.
Full independence: 3 parameters.
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Bayesian Networks

Bayesian Networks: Introduction

@ Bayesian Networks are

e used to specify joint probability distributions that
e have a particular factorization.

xp(h|c,a)p(i]|a)

I plc.h,ai) = p(c)p(a)

@ With practice, one can read conditional independence relationships
directly from the graph.

From Percy Liang's "Lecture 14: Bayesian networks II" slides from Stanford’'s CS221, Autumn 2014.
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Directed Graphs

A directed graph is a pair G =(V, &), where
e V={1,...,d}is a set of nodes and
o &E={(s,t)|s, t€V}is a set of directed edges.

Parents(5) = {3}
Parents(4) = {2,3}
9 9 Children(3) = {4,5}
Descendants(1) = {2,3,4,5}
9 e NonDescendants(3) = {1,2}

KPM Figure 10.2(a).
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Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no directed cycles.

DAG
Not a DAG

- O—(Cr—
. 8
®» ©
Every DAG has a topological ordering, in which parents have lower
numbers than their children.

http://www.geeksforgeeks.org/wp-content/uploads/SCC1.png and KPM Figure 10.2(a).
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Bayesian Networks

Bayesian Networks

Definition
A Bayesian network is a
o DAG G =(V,€&), where V={1,...,d}, and
@ a corresponding set of random variables X ={X,..., Xy}

where

@ the joint probability distribution over X factorizes as

d

P(Xl, e de) = Hp(xi | XParents(i))'
i=1

Bayesian networks are also known as
o directed graphical models, and
o belief networks.
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Bayesian Networks

Bayesian Networks: Example

Consider the Bayesian network depicted below:

Y

X2 XS
Xy

It implies the following factorization for the joint probability distribution:

p(x1,x2,x3,x4,y) = p(y)p(x1 | y)p(x2 [ x1,y)p(x3 | x1, y)p(xa | x3,y)

KPM Figure 10.2(b).
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Conditional Independencies

Bayesian Networks: “A Common Cause”

IS
=l

pla,b,c)=p(c)p(alc)p(b]|c)

Are a and b independent? (c=Rain, a=Slippery, b=Wet?)
Zp plalc)p(b]c),

which in general will not be equal to p(a)p(b).

From Bishop's Pattern recognition and machine learning, Figure 8.15.
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Conditional Independencies

Bayesian Networks: “A Common Cause”

IS
=l

pla,b,c)=p(c)p(alc)p(b]|c)

Are a and b independent, conditioned on observing c? (c=Rain,
a=Slippery, b=Wet?)

pla,blc) = plab,c)/pl(c)
= plalc)p(blc)

Soalblc.
From Bishop's Pattern recognition and machine learning, Figure 8.16.
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Bayesian Networks: “An Indirect Effect”

a c b

O—0O0—=0

p(a,b,c) =p(a)p(c|a)p(b]c)

Are a and b independent? (Note: This is a Markov chain)
(e.g. a=raining, c=wet ground, b=mud on shoes)

pla,b) = ) plab.c)
= P(a)ZP(C|3)P(b|C)

So doesn't factorize, thus not independent, in general.

From Bishop's Pattern recognition and machine learning, Figure 8.17.
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Bayesian Networks: “An Indirect Effect”

a c b

O—@—O

p(a,b,c)=p(a)p(cla)p(b]c)

Are a and b independent after observing c?
(e.g. a=raining, c=wet ground, b=mud on shoes)

pla,blc) = plab,c)/p(c)
p(a)p(cla)p(b|c)/p(c)
= plalc)p(blc)

Soalblec.

From Bishop's Pattern recognition and machine learning, Figure 8.18.
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Conditional Independencies

Bayesian Networks: “A Common Effect”

c

p(a,b,c) =p(a)p(b)p(c|a,b)

Are a and b independent? (a=course difficulty, b=knowledge, c= grade)

pla,b) = ) pla)p(b)p(c|a,b)
= p(a)p(b) ) _plclab)

= pla)p(b)

Soalb.

From Bishop's Pattern recognition and machine learning, Figure 8.19.
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Conditional Independencies

Bayesian Networks: “A Common Effect” or “V-Structure”

cC

p(a,b,c)=p(a)p(b)p(c|a,b)

Are a and b independent, given observation of ¢? (a=course difficulty,
b=knowledge, c= grade)
pla,blc) = p(a)p(b)p(c|a b)/p(c)

which does not factorize into p(a| c)p(b| c), in general.

From Bishop's Pattern recognition and machine learning, Figure 8.20.
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Conditional Independencies

Conditional Independence from Graph Structure

In general, given 3 sets of nodes A, B, and C

@ How can we determine whether
ALB|C?

@ There is a purely graph-theoretic notion of “d-separation” that is
equivalent to conditional independence.

Suppose we have observed C and we want to do inference on A.

We could ignore any evidence collected about B, where AL B| C.
See KPM Section 10.5.1 for details.
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Markov Blanket

Suppose we have a very large Bayesian network.

@ We're interested in a single variable A, which we cannot observe.

To get maximal information about A, do we have to observe all other
variables?

@ No! We only need to observe the Markov blanket of A:

p(A] all other nodes) = p(A | MarkovBlanket(A)).

In a Bayesian network, the Markov blanket of A consists of

o the parents of A
o the children of A
o the “co-parents” of A, i.e. the parents of the children of A

(See KPM Sec. 10.5.3 for details.)
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Markov Blanket

Markov Blanket of A in a Bayesian Network:

From http://en.wikipedia.org/wiki/Markov_blanket: "Diagram of a Markov blanket" by Laughsinthestocks -
Licensed under CCO via Wikimedia Commons
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When to use Bayesian Networks?

Bayesian Networks

@ Bayesian Networks are great when

e you know something about the relationships between your variables, or
o you will routinely need to make inferences with incomplete data.

o Challenges:

o The naive approach to inference doesn't work beyond small scale.
o Need more sophisticated algorithm:

@ exact inference
@ approximate inference
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Naive Bayes: A Generative Model for Classification

o X = {(X]_,XZ,X3,X4) {0, 1}4)} Y ={0,1} be a class label.

o Consider the Bayesian network depicted below:

Y

Xl. XQ X3 X4

@ BN structure implies joint distribution factors as:

p(x1,x2,x3,xa,y) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)p(xaly)

o Features Xi,..., Xy are independent given the class label Y.

KPM Figure 10.2(a).
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Parameters for Naive Bayes

o Generalize to d features.

@ Knowing the joint distribution means we need to know
py), pixaly),...p(xdly).
@ We could parameterize as:

P(Y=1) = 6,
PXi=1]Y=1) = 0,
P(Xi=11Y=0) = 06j

= 1+ 2d parameters to characterize the joint distribution
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Parameterized Expression for Joint

o Parameters:
P(Yy=1)=6, P(X;=11Y=1)=0x P(X;=1]Y =0)=0;
@ Joint distribution is
p(xi, ... Xd,y)
= py) ][ rlx
i=1
= (6,)"(1-0y)

X H(eil)yxi (1—9;1)y(1_xi) (eio)(l_}’)xi (l_eio)(l—y)(l—x,-)
i=1

ly)
1—y
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Naive Bayes

@ Suppose we know all conditional distributions:

p(y), p(x1ly),...p(xqly)

o We observe X = (Xq,...,Xy). What's the prediction for Y7
@ We have a full probability model

ply,x1,....xq) = ply)plxt,....xqy) (no assumptions)

d
= ply) Hp(x,- ly) (conditional independence)

@ We can use Bayes rule to compute anything we want...
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Posterior Class Probability

@ Let x=(xq,...,xq), and apply Bayes rule:

o Pyx) _ pOTTE plxi | y)
ply | x) = p(x = p(x)

@ We know everything except p(x).

@ We can compute it explicitly:

= > plxy)= > plxlylp

y€e{0,1} y€{0,1}

@ So final predicted probability distribution is

P TTL, p(xily)
> yeton Pxly)ply)

ply|x)=
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Dropping Normalization Constant

o Consider p(y | x) as a distribution over y, for fixed x.

ply | x) = ply,x)/p(x).

o With x fixed, p(x) is a constant — let's write it as k to make it clear:

plylx) = k'ply,x)
= plylx) o< ply,x)

@ How to recover value of k? p(y|x) must be a distribution on y:

Y plylx) = k1> ply.x)=1

y€{0,1} yef{0,1}
=k = Y ply.x
y€{0,1}

@ So we can always recover the normalizing constant whenever we want.
e Often no need to keep track of it.
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Naive Bayes and Logistic Regression

@ Recall the logistic regression prediction function is of the form

1

X plY =110 = pp s,

for some parameter vector w € RY.

Theorem
If p(y,x) is any Naive Bayes model with binary x and y, the prediction
function

x—p(Y=1]|x)

corresponds to logistic regression, for some w € RY.

Proof: Homework.
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Naive Bayes vs Logistic Regression

Naive Bayes is a model for the joint distribution p(y, x).

e We can sample (x, y) pairs from this distribution.
o Models of the joint distribution are called generative models.

Logistic regression is directly modeling the conditional distribution
ply [ x).

o No model for the features x = (xq, ..., Xq).
e Conditional probability models are called discriminative models.

Logistic regression is a specialist in the conditional distribution.

Naive Bayes is doing more!
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Naive Bayes vs Logistic Regression

e Missing data is no problem for Naive Bayes.
@ Suppose we're missing X; and X, from the input vector.
@ Just predict with
Py |xs,...xq) o< ply,x3,...,xq)
= > plyx)
x1,x2€{0,1}
@ For logistic regression? No natural way to predict with missing

features.
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Naive Bayes vs Logistic Regression

o Logistic regression handles binary or continuous features seamlessly.
@ For naive Bayes, you need a different family of conditional
distributions, e.g.
p(xily) =N (x| iy, 03,)
@ Wasted effort to model all features if you only care about p(y | x)?
@ Suppose we're missing X7 and X, from the input vector.

@ Just predict with

Py |xs,...x¢) o< ply,x3,...,xq)

= ) plyx

x1,x2€{0,1}

@ No natural method for missing features with logistic regression.
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Easy Estimators for Naive Bayes

@ Training set D = {(Xl,yl),---(X",yn)}-

@ There are obvious “plug-in" estimators for the Naive Bayes model:

R 1 <& .
P(Y=1) =~ ey:EZuy':n
i=1

. Y7 1y =1and X =1)
PXi=1|Y=1) ~ 0j;==—- d !
( | ) 1 ST =1)
N S 1(y/=0and x =1)
P(X;=1|Y=0) = 0jg="—2 d !
( ) 0 ST A7 =0)
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Maximum Likelihood Estimation for Naive Bayes

@ Training set D = {(Xl,yl) e (x",y”)}.
@ More principled: find the MLE for the Naive Bayes model.
@ The log-likelihood objective function is

J(6)=) logp(y’ x),
i=1
where we found the likelihood for a single point (x,y) is
plx,y) = (8,)(1—0,)"
T —auyo—
i=1
X H (0;0) 1% (1—0;0) 2174

i=1
@ Theorem: MLE is exactly the plug-in estimator.

@ Proof: Optional Homework.
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Class Prediction

@ If we want to predict a single class, we would use

y* =argmaxp(y | x).

y
@ One approach to this is to write
plY=1[x) _ plY=1x)/p(x) p(Y=1x)
p(Y =0]|x) p(Y =0,x)/p(x) ~ p(Y =0,x)
_ (Y =DIILpl Y =1)
plY =011 p0x | Y =0)
_plY =1) ekl Y =1)
a P(YZOJH p(xi|Y =0)

o Compare ratio to 1 to get prediction.
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Markov Chain Model

o A Markov chain model has structure:
I ) ZTs3

p(x1,x2,x3,...) = p(x1)p(xe | x1)p(x3 [ x2) - -

o Conditional distributions p(x; | x;_1) is called the transition model.

@ When conditional distribution independent of /, called
time-homogeneous.

@ 4-state transition model for X; € {51, 5>, S3, S4}:

0.3 0.5 0.1
0.7 0.4 0.5
528 (5)
0.6
0.9

KPM Figure 10.3(a) and Koller and Friedman’s Probabilistic Graphical Models Figure 6.04.
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Markov Models

Hidden Markov Model

@ A hidden Markov model (HMM) has structure:

2 ) —_— e o Q—Z?
Xy X9 o 0o 0 xr
T T
plz1,22,73,..) =p(z) [ [ plze | 1) [ ]p(xe]2)
t=2

t=1

Transition Model Observation Model

@ At deployment time, we typically only observe Xi,..., X7.
e Want to infer Z1,...,ZT.

@ e.g. Want to most likely sequence (Z3,...,Z71) . (Use Viterbi
algorithm.)

KPM Figure 10.4
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Maximum Entropy Markov Model

@ A maximum entropy Markov model (MEMM) has structure:

999!

plyi--yslx)= ply Hp yelye1,x)
t=1

Conditional Transition Model

@ At deployment time, we only observe Xi,..., X7.

e This is a conditional model. (And not a generative model).

Koller and Friedman's Probabilistic Graphical Models Figure 20.A.1.
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Maximum Entropy Markov Model

@ The MEMM transition model takes the following form:
plyilyi-1,x) o exp (Z}\kfk()/ilr)/i) +) urgr()/ivx)>
k r

@ The functions f, and g, are feature functions.

Suppose Y's represent parts-of-speech; X's represent words.

Could have

1 if y; ="NOUN" and x; = "apple"
gr (.ylv X) =

0 otherwise
@ For the “transition features”, typical would be

1 if (y,'_]_,y,') = (ADJ, NOUN)
fi(yie1,yi) = .
0 otherwise.
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