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Beta-Binomial Model

Coin Flipping

Parameter space θ ∈Θ= [0,1]:

P(Heads | θ) = θ.

Data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }

nh: number of heads
nt : number of tails

Likelihood model (Bernoulli Distribution):

p(D | θ) = θnh (1−θ)nt

(probability of getting the flips in the order they were received)
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Beta-Binomial Model

Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(α,β)
p(θ) ∝ θα−1 (1−θ)β−1

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.
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Beta-Binomial Model

Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Mean of Beta distribution:

Eθ=
h

h+ t
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Beta-Binomial Model

Coin Flipping: Posterior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Likelihood model:

p(D | θ) = θnh (1−θ)nt

Posterior density:

p(θ | D) ∝ p(θ)p(D | θ)

∝ θh−1 (1−θ)t−1×θnh (1−θ)nt

= θh−1+nh (1−θ)t−1+nt
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Beta-Binomial Model

Posterior is Beta

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Posterior density:

p(θ | D) ∝ θh−1+nh (1−θ)t−1+nt

Posterior is in the beta family:

θ | D ∼ Beta(h+nh, t+nt)

Interpretation:
Prior initializes our counts with h heads and t tails.
Posterior increments counts by observed nh and nt .
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Beta-Binomial Model

Example: Coin Flipping

Suppose we have a coin, possibly biased

P(Heads | θ) = θ.

Parameter space θ ∈Θ= [0,1].
Prior distribution: θ ∼ Beta(2,2).
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Beta-Binomial Model

Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:

Heads: 75 Tails: 60
θ̂MLE = 75

75+60 ≈ 0.556

Posterior distribution: θ | D ∼ Beta(77,62):
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Naive Bayes Example

Naive Bayes: A Generative Model for Classification

X=
{(

X1,X2,X3,X4) ∈ {0,1}4
)}

Y= {0,1} be a class label.

Consider the Bayesian network depicted below:

Y

X1 X2 X3 X4

BN structure implies joint distribution factors as:

p(x1,x2,x3,x4,y) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)p(x4 | y)

Features X1, . . . ,X4 are independent given the class label Y .
KPM Figure 10.2(a).
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Naive Bayes Example

Example: Message Classification

X= {Message Text}
Y= {BUSINESS , PERSONAL}
Training Data

BUSINESS

“Lunch meeting?”
“Expenses submitted EOM.”
“LOL”

PERSONAL

“Meet for lunch? EOM”
“LOL”
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Naive Bayes Example

Bag of Words Representation (Bernoulli Version)

Represent a message by the set of words it contains:

ignores word order
ignores word count (some bag of words models keep the count)
typically ignores punctuation and capitalization

Generate vocabulary from training data:

W = {eom,expenses,for,lol,lunch,meet,meeting,submitted,UNKNOWN}

Add in an UNKNOWN value, in case we encounter new words in
deployment.

Message M is represented by binary vector of length |W |= 9.
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Naive Bayes Example

Bag of Words Representation (Bernoulli Version)

Input: “Lunch? EOM” =⇒ M = {lunch,eom}:
Vector representation: x =

(
x1 . . . ,x|W |

)
Word (w) xw

lunch 1
meeting 0
expenses 0
submitted 0

eom 1
meet 0
for 0
lol 0

UNKNOWN 0
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Naive Bayes Example

Bernoulli Naive Bayes Model

Joint probability of message x =
(
x1, . . . ,x|W |

)
and class y is

p(x ,y) = p(y)

|W |∏
i=1

p(xi | y),

where each xi ∈ {0,1}, and y ∈ {B,P}.
We need to estimate:

P(Y = B)
P(Y = P)

P(Xw = 1 | Y = B) ∀w ∈W

P(Xw = 1 | Y = P) ∀w ∈W

David Rosenberg (New York University) DS-GA 1003 June 15, 2015 13 / 20



Naive Bayes Example

Bernoulli Naive Bayes: Parameter Estimation

Using relative frequencies in training, we have:

p̂(Y = B) = 3/5 p̂(Y = P) = 2/5

and

Word (w) p̂(Xw = 1 | B) p̂(Xw = 1 | P)
lunch 1/3 1/2

meeting 1/3 0
expenses 1/3 0
submitted 1/3 0

eom 1/3 1/2
meet 0 1/2
for 0 1/2
lol 1/3 1/2

UNKNOWN 0 0

David Rosenberg (New York University) DS-GA 1003 June 15, 2015 14 / 20



Naive Bayes Example

Naive Bayes Prediction for “Lunch? EOM”

Word (w) xw p̂(Xw = 1 | B) p̂(xw | B) p̂(Xw = 1 | P) p̂(xw | P)

lunch 1 1/3 1/3 1/2 1/2
meeting 0 1/3 2/3 0 1
expenses 0 1/3 2/3 0 1
submitted 0 1/3 2/3 0 1

eom 1 1/3 1/3 1/2 1/2
meet 0 0 1 1/2 1/2
for 0 0 1 1/2 1/2
lol 0 1/3 2/3 1/2 1/2

UNKNOWN 0 0 1 0 1

p(M | B) =
1
3
· 2
3
· 2
3
· 2
3
· 1
3
·1 ·1 · 2

3
·1= 16

243
≈ .07

p(M | P) =
1
2
·1 ·1 ·1 · 1

2
· 1
2
· 1
2
· 1
2
·1= 1

32
= .03
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Naive Bayes Example

Naive Bayes Prediction for “Lunch? EOM”

Input: “Lunch? EOM” =⇒ M = {lunch,eom}

Message probability, conditional on message type:

p(M | B) =
1
3
· 2
3
· 2
3
· 2
3
· 1
3
·1 ·1 · 2

3
·1= 16

243
≈ .07

p(M | P) =
1
2
·1 ·1 ·1 · 1

2
· 1
2
· 1
2
· 1
2
·1= 1

32
= .03

What does it mean that p(M | P) = .03?

3% of personal messages have same bag of words as M.
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Naive Bayes Example

Naive Bayes Prediction

Input: “Lunch? EOM” =⇒ M = {lunch,eom}

Output:

p(BUSINESS |M) ∝ p(B)p(M | B)

=
3
5
· 16
243

=
16
405

p(PERSONAL |M) ∝ p(P)p(M | P)

=
2
5
· 1
32

=
1
90

Now just renormalize:

p(BUSINESS |M) =
16
405

/

(
1
90

+
16
405

)
≈ 0.78

p(PERSONAL |M) =
1
90
/

(
1
90

+
16
405

)
≈ 0.22
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Dealing with Zeros

Naive Bayes Prediction: Issue With Zeros

Input: M =“Meeting?”
Output:

p(BUSINESS |M) ∝ 1
3

p(PERSONAL |M) ∝ 0

Renormalizing:

p(BUSINESS |M) = 1
p(PERSONAL |M) = 0

This is bad:

Never want to predict probability 0 if something is possible.

Worse: Zero counts common for small sample sizes and rare features.
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Dealing with Zeros

Laplace Smoothing

Laplace Smoothing is a traditional fix to the 0 count issue.
Idea is to add 1 to every empirical count:

p̂(lunch | PERSONAL) =
1+
∑

1(lunch and PERSONAL)
1+
∑

1(PERSONAL)

The added 1 is called a pseudocount.
Like assuming every outcome that can occur was observed at least
once.
Seems to solve the problem – but is there a more principled approach?
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Bayesian Naive Bayes

Bayesian Naive Bayes

Be Bayesian and put a beta prior on each parameter.

Option 1: Use posterior mean as point estimate for each parameter,
then continue as before.

Laplace smoothing is a special case, in which priors are all Beta(1,1).

Option 2: Go full Bayesian.
No parameter estimates. Base everything on posterior θ | D.

Predict with the predictive distribution:

y | x ,D

Recall, this is integrating out the parameter θ w.r.t. the posterior
distribution.
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