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Coin Flipping

o Parameter space 6 € © =10, 1]:
P(Heads | 0) = 0.

e Data D={H,H, T, T, T,T,T,H,..., T}

e np: number of heads
e ny: number of tails

e Likelihood model (Bernoulli Distribution):

p(D[0)=0"(1-6)"

o (probability of getting the flips in the order they were received)
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Coin Flipping: Beta Prior

@ Prior:

0 ~ Beta(x,p)
p(0) x 0% 1(1—9)F !
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Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.
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Coin Flipping: Beta Prior

@ Prior:

® ~ Beta(h,t)
p(0) o 0 1(1—0)?

@ Mean of Beta distribution:

h
0=——
h+t
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Coin Flipping: Posterior

@ Prior:
® ~ Beta(ht)
p(0) o 0 1(1—0)"1
o Likelihood model:

p(D16)=0"(1-0)"

o Posterior density:

p(O[D) o p(0)p(D]6)

x O l1—g)ftxem(1—0)
eh71+nh (1_e)t—1+nt
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Beta-Binomial Model

Posterior is Beta

@ Prior:

® ~ Beta(ht)
p(0) o 0 1(1—0) 1

o Posterior density:

p(0]D) o @f1tm(p_g)tttm

@ Posterior is in the beta family:

0|D ~ Beta(h+np t+n;)

o Interpretation:

e Prior initializes our counts with h heads and t tails.
o Posterior increments counts by observed np, and n;.
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Beta-Binomial Model

Example: Coin Flipping

@ Suppose we have a coin, possibly biased

P(Heads | ) = 0.
o Parameter space 6 € © = [0, 1].

@ Prior distribution: 0 ~ Beta(2,2).

Prior: Beta(2,2)

OI25) 5 0. ‘/f: 1 EJU
0
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Example: Coin Flipping

o Next, we gather some data D ={H,H, T, T,T,T,T,H,..., T}

o Heads: 75 Tails: 60

° éMLE = 75:—7560 =~ 0.556

@ Posterior distribution: 6 |D ~ Beta(77,62):
Posterior: Beta(77,62)
75-
@50—

2.5~
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Naive Bayes Example

Naive Bayes: A Generative Model for Classification

o X = {(X]_,XZ,X3,X4) {0, 1}4)} Y ={0,1} be a class label.

o Consider the Bayesian network depicted below:

Y

Xl. XQ X3 X4

@ BN structure implies joint distribution factors as:

p(x1,x2,x3,xa,y) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)p(xaly)

o Features Xi,..., Xy are independent given the class label Y.

KPM Figure 10.2(a).
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Naive Bayes Example

Example: Message Classification

@ X ={Message Text}
e Y ={BUSINESS, PERSONAL}
@ Training Data

e BUSINESS

o "“Lunch meeting?”
o “Expenses submitted EOM.”
e “LOL"

o PERSONAL

o “Meet for lunch? EOM”
e “LOL"
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Bag of Words Representation (Bernoulli Version)

@ Represent a message by the set of words it contains:

e ignores word order
e ignores word count (some bag of words models keep the count)
e typically ignores punctuation and capitalization

e Generate vocabulary from training data:

W ={eom,expenses,for,lol,lunch,meet,meeting,submitted, UNKNOWN}

o Add in an UNKNOWN value, in case we encounter new words in
deployment.

@ Message M is represented by binary vector of length |W|=09.
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Bag of Words Representation (Bernoulli Version)

@ Input: “Lunch? EOM” = M ={lunch,eom}:

@ Vector representation: x = (xl . ,X‘W‘)

| Word (w) |
lunch
meeting
expenses
submitted
eom

meet
for
lol

UNKNOWN

o|o|o|o|r|o|o|o|~|&
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Bernoulli Naive Bayes Model

@ Joint probability of message x = (xl ..... X‘W‘) and class y is

(Wi

px.y)=p) ] plxily),
i=1

where each x; €{0,1}, and y € {B,P}.

@ We need to estimate:

P(Y = B)

P(Y =P)
P(X,=1Y=B)Ywe W
P(X,=1|Y=P)Ywe W
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Naive Bayes Example

Bernoulli Naive Bayes: Parameter Estimation

@ Using relative frequencies in training, we have:

plY=B)=3/5 p(Y=P)=2/5

and

[ Word (w) [ p(Xw =1[B) [ p(Xw =1[P) |

lunch 1/3 1/2
meeting 1/3 0
expenses 1/3 0
submitted 1/3 0
eom 1/3 1/2
meet 0 1/2
for 0 1/2
lol 1/3 1/2
UNKNOWN 0 0
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Naive Bayes Prediction for “Lunch? EOM"

| Word () | xw | p(Xw=1]B)

plxw | B) [ B(Xw =11P) [ plxw |P) |

lunch 1 1/3 1/3 1/2 1/2
meeting 0 1/3 2/3 0 1
expenses 0 1/3 2/3 0 1
submitted 0 1/3 2/3 0 1

eom 1 1/3 1/3 1/2 1/2

meet 0 0 1 1/2 1/2

for 0 0 1 1/2 1/2

lol 0 1/3 2/3 1/2 1/2
UNKNOWN | 0 0 1 0 1
12221 2 16
p(M|B) = g.g.g.g.g.l.l.g.l_273,\,.07
1 1111 1
p(M|P) = 5-111-5-5-5-5-1—3—2 03
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Naive Bayes Prediction for “Lunch? EOM"

@ Input: "Lunch? EOM" = M ={lunch, eom}

o Message probability, conditional on message type:

12221 2 16
M B = e e — e — e — . 1171:7%
PIMIE) 33333 3 243 =07
1 1111 1

@ What does it mean that p(M|P) =.037

e 3% of personal messages have same bag of words as M.
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Naive Bayes Example

Naive Bayes Prediction

@ Input: "Lunch? EOM" = M ={lunch, eom}

o Output:
p(BUSINESS | M) o« p(B)p(M|B)
_ 31616
5 243 405
p(PERSONAL | M) o< p(P)p(M|P)
_ 21 1
5 32 90
@ Now just renormalize:
16 1 16
BUSINE M = —/= ~0.
p(BUSINESS [ M) 405/<90+405> 0.78

1 (1 16
p(PERSONAL | M) = 9o/<90+405>”0'22
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Dealing with Zeros

Naive Bayes Prediction: Issue With Zeros

@ Input: M ="Meeting?"
o Output:

p(BUSINESS | M) o
p(PERSONAL | M) o

O WK

@ Renormalizing:

p(BUSINESS | M) =
p(PERSONAL | M) = 0

@ This is bad:

o Never want to predict probability 0 if something is possible.

@ Worse: Zero counts common for small sample sizes and rare features.
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Laplace Smoothing

Laplace Smoothing is a traditional fix to the 0 count issue.

Idea is to add 1 to every empirical count:

14> 1(lunch and PERSONAL)

p(lunch | PERSONAL) = 1+ 1(PERSONAL)

The added 1 is called a pseudocount.

@ Like assuming every outcome that can occur was observed at least
once.
@ Seems to solve the problem — but is there a more principled approach?
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Bayesian Naive Bayes

Bayesian Naive Bayes

@ Be Bayesian and put a beta prior on each parameter.

@ Option 1: Use posterior mean as point estimate for each parameter,
then continue as before.

e Laplace smoothing is a special case, in which priors are all Beta(1,1).
e Option 2: Go full Bayesian.
o No parameter estimates. Base everything on posterior 6 | D.

@ Predict with the predictive distribution:

yIx,D

o Recall, this is integrating out the parameter 0 w.r.t. the posterior
distribution.
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