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Classical Statistics

Frequentist or “Classical” Statistics

Probability model with parameter θ ∈Θ

{p(y ;θ) | θ ∈Θ} ,

where p(y ;θ) is either a PDF or a PMF.
Assume that p(y ;θ) governs the world we are observing.
In frequentist statistics, the parameter θ is a

fixed constant (i.e. not random) and is
unknown to us.

If we knew θ, there would be no need for statistics.
Instead of θ, we have a sample D= {y1, . . . ,yn} i.i.d. p(y ;θ).
Statistics is about how to use D in place of θ.
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Classical Statistics

Point Estimation

One type of statistical problem is point estimation.
A statistic s = s(D) is any function of the data.
A statistic θ̂= θ̂(D) is a point estimator if θ̂≈ θ.
Desirable statistical properties of point estimators:

Consistency: As data size n→∞, we get θ̂→ θ.
Efficiency: (Roughly speaking) For large n, θ̂ achieves accuracy at
least as good as any other estimator.
e.g. maximum likelihood estimation is consistent and efficient under
reasonable conditions.

In frequentist statistics, you can make up any estimator you want.

Justify its use by showing it has desirable properties.
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Bayesian Statistics: Introduction

Bayesian Statistics

Major viewpoint change In Bayesian statistics:
parameter θ ∈Θ is a random variable.

New ingredient: the prior distribution:
a distribution on parameter space Θ.
Reflects our belief about θ.
Must be chosen before seeing any data.
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Bayesian Statistics: Introduction

The Bayesian Method

1 Define the model:

Choose a distribution p(θ), called the prior distribution.
Choose a probability model or “ likelihood model”, now written as:

{p(y | θ) | θ ∈Θ} .

2 After observing D, compute the posterior distribution p(θ | D).
3 Decide the action based on p(θ | D).
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Bayesian Statistics: Introduction

The Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(θ | D) =
p(D | θ)p(θ)

p(D)
.

likelihood: p(D | θ)

prior: p(θ)

marginal likelhood: p(D).
Note: p(D) is just a normalizing constant for p(θ | D). Can write

p(θ | D)︸ ︷︷ ︸
posterior

∼ p(D | θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

.
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Bayesian Statistics: Introduction

Recap and Interpretation

Prior represents belief about θ before observing data D.
Posterior represents the rationally “updated” beliefs after seeing D.
All inferences and action-taking are based on the posterior distribution.
In the Bayesian approach,

No issue of “choosing a procedure” or justifying an estimator.
Only choices are the prior and the likelihood model.
For decision making, need a loss function.
Everything after that is computation.
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Bayesian Statistics: Introduction

Example: Coin Flipping

Suppose we have a coin, possibly biased

P(Heads | θ) = θ.

Parameter space θ ∈Θ= [0,1].
Prior distribution: θ ∼ Beta(2,2).
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Bayesian Statistics: Introduction

Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:

Heads: 75 Tails: 60
θ̂MLE = 75

75+60 ≈ 0.556

Posterior distribution: θ | D ∼ Beta(77,62):
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Bayesian Statistics: Introduction

What to do with the Posterior Distribution?

Look at it.
Extract a point estimate of θ (e.g. mean or mode of posterior).
Extract “credible set” for θ (a Bayesian confidence interval).

e.g. Interval [a,b] is a 95% credible set if

P(θ ∈ [a,b] | D)> 0.95

The most “Bayesian” approach is Bayesian decision theory:
Choose a loss function.
Find action minimizing “posterior risk”.
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Bayesian Decision Theory

Bayesian Decision Theory

Ingredients:
Action space A.
Parameter space Θ.
Loss function: ` :A×Θ→ R.
Prior: Distribution p(θ) on Θ.

The posterior risk of an action a ∈A is

r(a) := E [`(θ,a) | D]

=

∫
`(θ,a)p(θ | D)dθ.

It’s the expected loss under the posterior.

A Bayes action a∗ is an action that minimizes posterior risk:

r(a∗) = min
a∈A

r(a)
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Bayesian Decision Theory

Bayesian Point Estimation

General Setup:

Data D generated by p(y | θ), for unknown θ ∈Θ.
Want to produce a point estimate for θ.

Choose the following:

Loss `(θ̂,θ) =
(
θ− θ̂

)2

Prior p(θ) on Θ.

Find action θ̂ ∈Θ that minimizes posterior risk:

r(θ̂) = E
[(
θ− θ̂

)2
| D

]
=

∫ (
θ− θ̂

)2
p(θ | D)dθ
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Bayesian Decision Theory

Bayesian Point Estimation: Square Loss

Find action θ̂ ∈Θ that minimizes posterior risk

r(θ̂) =

∫ (
θ− θ̂

)2
p(θ | D)dθ.

Differentiate:

dr(θ̂)

d θ̂
= −

∫
2
(
θ− θ̂

)
p(θ | D)dθ

= −2
∫
θp(θ | D)dθ+2θ̂

∫
p(θ | D)dθ︸ ︷︷ ︸

=1

= −2
∫
θp(θ | D)dθ+2θ̂
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Bayesian Decision Theory

Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

dr(θ̂)

d θ̂
=−2

∫
θp(θ | D)dθ+2θ̂.

First order condition dr(θ̂)

dθ̂
= 0 gives

θ̂ =

∫
θp(θ | D)dθ

= E [θ | D]

Bayes action for square loss is the posterior mean.
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Bayesian Decision Theory

Bayesian Point Estimation: Absolute Loss

Loss: `(θ, θ̂) =
∣∣∣θ− θ̂∣∣∣

Bayes action for absolute loss is the posterior median.
That is, the median of the distribution p(θ | D).
Show with approach similar to what was used in Homework #1.
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Bayesian Decision Theory

Bayesian Point Estimation: Zero-One Loss

Suppose Θ is discrete (e.g. Θ= {english, french})
Zero-one loss: `(θ, θ̂) = 1(θ 6= θ̂)
Posterior risk:

r(θ̂) = E
[
1(θ 6= θ̂) | D

]
= P

(
θ 6= θ̂ | D

)
= 1−P

(
θ= θ̂ | D

)
= 1−p(θ̂ | D)

Bayes action is

θ̂ = argmax
θ∈Θ

p(θ | D)

This θ̂ is called the maximum a posteriori (MAP) estimate.
The MAP estimate is the mode of the posterior distribution.
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Bayesian Decision Theory

Bayesian Point Estimation: Custom Loss Function

Suppose Θ is discrete (e.g. Θ= {english, french})
Loss function `(θ̂,θ):

`(french,english) = 10
`(english, french) = 1
`(english,english) = 0
`(french, french) = 0

Posterior risk:

r(french) = 10p (english | D)+0p (french | D)

r(english) = 1p (french | D)+0p (english | D)

Bayes action is french iff r(french)> r(english), i.e. when

p(english | D)

p(french | D)
>

1
10

.
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Bayesian Regression

Bayesian Conditional Models

Input space X= Rd Output space Y= R
Conditional probability model, or likelihood model:

{p(y | x ,θ) | θ ∈Θ}

Conditional here refers to the conditioning on the input x .
Means that x ’s are known and not governed by our probability model.
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Bayesian Regression

Gaussian Regression Model

Input space X= Rd Output space Y= R
Conditional probability model, or likelihood model:

y | x ,θ ∼ N
(
θT x ,σ2) ,

for some known σ2 > 0.
Parameter space Θ= Rd .
Data: D= {(x1,y1), . . . ,(xn,yn)}

Write y = (y1, . . . ,yn) and x = (x1, . . . ,xn).
Assume yi ’s are conditionally independent, given x and θ.
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Bayesian Regression

Gaussian Likelihood

The likelihood of θ ∈Θ for the data D is

p(y | x ,θ) =

n∏
i=1

p(yi | xi ,θ) by conditional independence.

=

n∏
i=1

[
1

σ
√
2π

exp
(
−
(yi −θ

T xi )
2

2σ2

)]
Recall from the GLM lecture1 that the MLE is

θ∗MLE = argmax
θ∈Rd

p(y | x ,θ)

= argmin
θ∈Rd

n∑
i=1

(yi −θ
T xi )

2

1https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.
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Bayesian Regression

Priors and Posteriors

Choose a Gaussian prior distribution p(θ) on Θ:

θ ∼ N (0,Σ0)

for some covariance matrix Σ0 � 0 (i.e. Σ0 is spd).
Posterior distribution

p(θ | D) = p(θ | x ,y)

= p (y | x ,θ)p(θ)/p(y)

∝ p(y | x ,θ)p(θ)

=

n∏
i=1

[
1

σ
√
2π

exp
(
−
(yi −θ

T xi )
2

2σ2

)]
(likelihood)

× |2πΣ0|
−1/2 exp

(
−
1
2
θTΣ−1

0 θ)

)
(prior)
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Bayesian Regression

Example in 1-Dimension

Input space X= [−1,1] Output space Y= R
Basic Gaussian regression model:

y = w0+w1x +ε,

where ε ∼ N(0,0.22).
Written another way, the likelihood model is

y | x ,θ= (w0,w1) ∼ N
(
w0+w1x , 0.22) .
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Bayesian Regression

Example in 1-Dimension

Prior distribution: θ= (w0,w1) ∼ N
(
0, 1

2 I
)

On right, plots of y = w0+w1x for random (w0,w1) ∼ p(θ) =N(0, 1
2 I ).

Bishop’s PRML Fig 3.7
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Bayesian Regression

Example in 1-Dimension

Consider y and x related as y = w0+w1x +ε, where ε ∼ N(0,0.22).
Conditional probability model, or likelihood model:

y | x ,θ= (w0,w1) ∼ N
(
w0+w1x , 0.22) .

Prior distribution: θ= (w0,w1) ∼ N
(
0, 1

2 I
)

On right, plots of y = w0+w1x for random (w0,w1) ∼ p(θ) =N(0, 1
2 I ).

Bishop’s PRML Fig 3.7
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Bayesian Regression

Example in 1-Dimension: 1 Observation

On left, the white cross indicates the true parameter values.
On right, the blue circle indicates the training observation.

Bishop’s PRML Fig 3.7
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Bayesian Regression

Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
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Bayesian Regression

Predictive Distribution

Given a new input point xnew, how to predict ynew ?
Predictive distribution

p(ynew | xnew,D)

=

∫
p(ynew | xnew,θ,D)p(θ | D)dθ

=

∫
p(ynew | xnew,θ)p(θ | D)dθ

For Gaussian regression, posterior and predictive distributions have
closed forms.
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Bayesian Regression

Closed Form for Posterior

Model:

θ ∼ N (0,Σ0)

yi | x ,θ i.i.d. N(θT xi ,σ
2)

Design matrix X Response column vector y
Posterior distribution is a Gaussian distribution:

θ | D ∼ N(µP ,ΣP)

ΣP =
(
σ−2XTX +Σ−1

0
)−1

µP = σ−2ΣPX
T y

Posterior Variance ΣP gives us a natural uncertainty measure.
See Rasmussen and Williams’ Gaussian Processes for Machine Learning, Ch 2.1.

http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
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Bayesian Regression

Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

θ | D ∼ N(µP ,ΣP)

ΣP =
(
σ−2XTX +Σ−1

0
)−1

µP = σ−2ΣPX
T y

The MAP estimator and the posterior mean are given by

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

Look familiar?
For the prior variance Σ0 =

σ2

λ I , we get

µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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Bayesian Regression

Posterior Mean and Posterior Mode (MAP)

Posterior density for Σ0 =
σ2

λ I :

p(θ | D) ∝ exp
(
−
λ

2σ2 ‖θ‖
2
)

︸ ︷︷ ︸
prior

n∏
i=1

exp
(
−
(yi −θ

T xi )
2

2σ2

)
︸ ︷︷ ︸

likelihood

To find MAP, sufficient to minimize the log posterior:

θ̂MAP = argmin
θ∈Rd

[− logp(θ | D)]

= argmin
θ∈Rd

n∑
i=1

(yi −θ
T xi )

2

︸ ︷︷ ︸
log-likelihood

+ λ‖θ‖2︸ ︷︷ ︸
log-prior

Which is the ridge regression objective.
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Bayesian Regression

Closed Form for Predictive Distribution

Model:

θ ∼ N (0,Σ0)

yi | x ,θ i.i.d. N(θT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,θ)p(θ | D)dθ.

Averages over prediction for each θ, weighted by posterior distribution.

Closed form:

ynew | xnew,D ∼ N (ηnew , σnew)

µnew = µTP xnew

σnew = xTnewΣPxnew︸ ︷︷ ︸
from variance in θ

+ σ2︸︷︷︸
inherent variance in y
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Bayesian Regression

Predictive Distributions

With predictive distributions, can draw error bands:

Rasmussen and Williams’ Gaussian Processes for Machine Learning, Fig.2.1(b)
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Bayesian Regression

Bayesian Predictive Distributions vs GLMs

Gaussian regression with MLE, from our GLM lecture:
produces a Gaussian for each input x .

x 7→N
(
xTθMLE , σ

2
)

Bayesian predictive distributions:
produce a Gaussian for each input x

x 7→N

θTridgex , xTnewΣPxnew︸ ︷︷ ︸
from variance in θ

+ σ2︸︷︷︸
inherent variance in y


In Bayesian version

equivalent to using a regularized least squares fit
variance has additional piece from uncertainty in θ
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Beta-Binomial Model

Coin Flipping

Parameter space θ ∈Θ= [0,1]:

P(Heads | θ) = θ.

Data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }

nh: number of heads
nt : number of tails

Conditional Independence Assumption:
Conditioned on θ, repeated flips are independent

Likelihood model (Bernoulli Distribution):

p(D | θ) = θnh (1−θ)nt

(probability of getting the flips in the order they were received)
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Beta-Binomial Model

Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Mean of Beta distribution:

Eθ=
h

h+ t

Interpret h and t as the number of heads/tails received in a prior
experiment.

Then Eθ is the obvious MLE and plug-in estimate for θ.

For fixed Eθ, Var(θ) decreases as number of flips n = h+ t grows.
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Beta-Binomial Model

Coin Flipping: Posterior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Likelihood model:

p(D | θ) = θnh (1−θ)nt

Posterior density:

p(θ | D) ∝ p(θ)p(D | θ)

∝ θh−1 (1−θ)t−1×θnh (1−θ)nt

= θh−1+nh (1−θ)t−1+nt
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Beta-Binomial Model

Posterior is Beta

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Posterior density:

p(θ | D) ∝ θh−1+nh (1−θ)t−1+nt

So

θ | D ∼ Beta(h+nh, t+nt)

It’s as though we continued our experiment by adding more flips.
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Conjugate Priors

Conjugate Prior Examples

A prior is conjugate for a likelihood model if the posterior is in the
same “family” as the prior.

1 If prior is a beta distribution, and likelihood model is a Bernoulli
distribution, then posterior is a beta distribution.

Prior and posterior in the same family=⇒ Beta is a conjugate prior
for Bernoulli

2 If prior is a Gaussian distribution, and likelihood model is a Gaussian
distribution, then posterior is a Gaussian distribution.

Prior and posterior in the same family=⇒ Gaussian is a conjugate
prior for Gaussian

Conjugacy of the prior is really a statement about the prior family.
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Conjugate Priors

Conjugate Prior Family

Let π be a family of prior distributions on Θ.
Let P be likelihood model with parameter space Θ.
We say that π is conjugate to P if for any prior in π, the posterior is
always in π.
Trivial Example:

The family of all probability distributions is conjugate to any likelihood
model.

Every exponential family has a nontrivial conjugate prior family. (KPM
Section 9.2)
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Bayesian Naive Bayes

Naive Bayes: A Generative Model for Classification

X=
{(

X1,X2,X3,X4) ∈ {0,1}4
)}

Y= {0,1} be a class label.

Consider the Bayesian network depicted below:

Y

X1 X2 X3 X4

BN structure implies joint distribution factors as:

p(x1,x2,x3,x4,y) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)p(x4 | y)

Features X1, . . . ,X4 are independent given the class label Y .
KPM Figure 10.2(a).
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Bayesian Naive Bayes

Parameterized Expression for Joint Distribution

Parameters:

P(Y = 1) = θy P(Xi = 1 | Y = 1) = θi1 P(Xi = 1 | Y = 0) = θi0

Joint distribution is

p(x1, . . .xd ,y)

= p(y)
n∏

i=1

p(xi | y)

= (θy )
y (1−θy )

1−y

×
n∏

i=1

(θi1)
yxi (1−θi1)

y(1−xi) (θi0)
(1−y)xi (1−θi0)

(1−y)(1−xi)
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Bayesian Naive Bayes

Maximum Likelihood Estimators for Naive Bayes

Training set D=
{(

x1,y1
)
, . . .(xn,yn)

}
.

Obvious “plug-in” estimators for the Naive Bayes model are also MLEs:

P(Y = 1) ≈ θ̂y =
1
n

n∑
i=1

1(y i = 1)

P(Xi = 1 | Y = 1) ≈ θ̂i1 =

∑n
j=1 1(y

j = 1 and x ji = 1)∑n
j=1 1(y j = 1)

P(Xi = 1 | Y = 0) = θ̂i0 =

∑n
j=1 1(y

j = 0 and x ji = 1)∑n
j=1 1(y j = 0)
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Bayesian Naive Bayes

Example: SPAM Classification

Label Y ∈ Y= {SPAM,HAM}.
Features Xi ∈ {0,1}.
Bag of words representation:

Xi = 1(Email contains word "Private_Jet")

After parameter estimation, prediction done with

p(SPAM|x) ∝ p(SPAM)

d∏
i=1

p̂(xi | SPAM).

Each p̂(xi | y) is the estimated probability that xi would be observed
(or not) in a SPAM message.

Issue: What if we never see X1 = 1 when Y = SPAM in D?
Then whenever we see X1 = 1, we will predict p(SPAM | x) = 0.
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Bayesian Naive Bayes

The Zero Count Issue

If any conditional probabilities P(Xi = xi | y) get estimated as 0,

we’ll predict 0 probability for some y whenever xi is observed.

This is bad:

Never want to predict probability 0 if something is possible.

Worse: This occurrence is not unusual at all for small sample sizes or
rare features.
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Bayesian Naive Bayes

Laplace Smoothing

One traditional fix to the 0 count issue is called Laplace Smoothing.
Idea is to add 1 to every empirical count.
To estimate P(Xi = 1 | Y = 1), use

θ̂i1 =
1+
∑n

j=1 1(y
j = 1 and x ji = 1)

1+
∑n

j=1 1(y j = 1)
.

The added 1 is called a pseudocount.
Like assuming every outcome that can occur was observed at least
once.
Seems to solve the problem – but is there a more principled approach?
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Bayesian Naive Bayes

Bayesian Naive Bayes

Parameters:

P(Y = 1) = θy P(Xi = 1 | Y = 1) = θi1 P(Xi = 1 | Y = 0) = θi0

Put a Beta prior distribution on each parameter.

Option 1: Use posterior mean as point estimate for each parameter,
then continue as before.

Laplace smoothing is a special case, in which priors are all Beta(1,1).

Option 2: Go full Bayesian.
No parameter estimates. Base everything on posterior θ | D.

Predict with the predictive distribution:

y | x ,D

Recall, this is integrating out the parameter θ w.r.t. the posterior
distribution.
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