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Classical Statistics

Frequentist or “Classical” Statistics

Probability model with parameter 6 € ©

{p(y;0)16 €0},

where p(y;0) is either a PDF or a PMF.

@ Assume that p(y;0) governs the world we are observing.
@ In frequentist statistics, the parameter 0 is a
o fixed constant (i.e. not random) and is
e unknown to us.
o If we knew 0, there would be no need for statistics.
@ Instead of 6, we have a sample D ={y;,...,y,}i.i.d. p(y;0).
@ Statistics is about how to use D in place of ©.

David Rosenberg (New York University)| DS-GA 1003 April 22, 2015 2/ 46



Classical Statistics

Point Estimation

One type of statistical problem is point estimation.
A statistic s = s(D) is any function of the data.
A statistic 6 = 0(D) is a point estimator if 6 ~ 0.

Desirable statistical properties of point estimators:

o Consistency: As data size n — oo, we get 6 — 6.

o Efficiency: (Roughly speaking) For large n, 6 achieves accuracy at
least as good as any other estimator.

e e.g. maximum likelihood estimation is consistent and efficient under
reasonable conditions.

In frequentist statistics, you can make up any estimator you want.

o Justify its use by showing it has desirable properties.
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Bayesian Statistics: Introduction

Bayesian Statistics

@ Major viewpoint change In Bayesian statistics:
e parameter 0 € © is a random variable.
@ New ingredient: the prior distribution:

e a distribution on parameter space ©.
o Reflects our belief about 6.
o Must be chosen before seeing any data.
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The Bayesian Method

@ Define the model:

o Choose a distribution p(0), called the prior distribution.
e Choose a probability model or “likelihood model’, now written as:

{p(y10)16 €0}

@ After observing D, compute the posterior distribution p(0 | D).
© Decide the action based on p(8| D).
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The Posterior Distribution

@ By Bayes rule, can write the posterior distribution as

p(D106)p(0)

p(0|D) = (D)

likelihood: p(D|0)

prior: p(0)
marginal likelhood: p(D).

Note: p(D) is just a normalizing constant for p(6 | D). Can write

p(6 D) ~p(D|06)p(0).
—— ———~

posterior likelihood prior
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Bayesian Statistics: Introduction

Recap and Interpretation

Prior represents belief about 6 before observing data D.
Posterior represents the rationally “updated” beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.

In the Bayesian approach,

o No issue of “choosing a procedure” or justifying an estimator.
o Only choices are the prior and the likelihood model.

o For decision making, need a loss function.
o Everything after that is computation.
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Example: Coin Flipping
@ Suppose we have a coin, possibly biased
P(Heads | ) = 0.

o Parameter space 6 € © = [0, 1].
@ Prior distribution: 0 ~ Beta(2,2).

Prior: Beta(2,2)
1.5-

p(6)

OI25) 1 EJU
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Example: Coin Flipping

o Next, we gather some data D ={H,H, T, T,T,T,T,H,..., T}

o Heads: 75 Tails: 60

° éMLE = 75:—7560 =~ 0.556

@ Posterior distribution: 6 |D ~ Beta(77,62):

Posterior: Beta(77,62)

7.5-

p(6)

2.5~
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What to do with the Posterior Distribution?

@ Look at it.
e Extract a point estimate of 6 (e.g. mean or mode of posterior).
@ Extract “credible set” for 0 (a Bayesian confidence interval).

o e.g. Interval [a, b] is a 95% credible set if
P(0c[a b]|D)>0.95

@ The most “Bayesian” approach is Bayesian decision theory:

e Choose a loss function.
e Find action minimizing “posterior risk.
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Bayesian Decision Theory

Bayesian Decision Theory

@ Ingredients:

e Action space A.

o Parameter space O.

o Loss function: {: A x© — R.
e Prior: Distribution p(6) on ©.

@ The posterior risk of an action a€ A is
r(a) = E[(0,a)]|D]
= Jﬂ(e,a)p(e | D) de.

e It's the expected loss under the posterior.

@ A Bayes action a* is an action that minimizes posterior risk:

r(a®) = ar2i2 r(a)
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Bayesian Decision Theory

Bayesian Point Estimation

e General Setup:

o Data D generated by p(y |0), for unknown 6 € ©.
e Want to produce a point estimate for 0.

@ Choose the following:

o Loss {(0,0) = (9—6)2
(0)

e Prior p(0) on B.

e Find action 6 € © that minimizes posterior risk:

r(6) = E[(e—é)zw}

- J(G—é)zp(GID)dG
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Bayesian Decision Theory

Bayesian Point Estimation: Square Loss

e Find action 6 € © that minimizes posterior risk

r(0) = J(O—é)2p(9|®)d9

o Differentiate:

d;(é) - J (e e) p(6]D)do

D>

| S —
=1

2
- 2J9p9|® d9+26J (0]D)do
— 2J9p9|9 ) dO +20
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Bayesian Decision Theory

Bayesian Point Estimation: Square Loss

@ Derivative of posterior risk is

dr(0 R
r(6) :—2J9p(9|D)d9+29.
do
e First order condition d:j(éé) =0 gives

6 = Jep(9|®)d9
= E[B]|D]

@ Bayes action for square loss is the posterior mean.
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Bayesian Decision Theory

Bayesian Point Estimation: Absolute Loss

o Loss: {(6,60) = ‘6—@‘
@ Bayes action for absolute loss is the posterior median.
o That is, the median of the distribution p(6 | D).

e Show with approach similar to what was used in Homework #1.
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Bayesian Decision Theory

Bayesian Point Estimation: Zero-One Loss

@ Suppose O is discrete (e.g. © = {english, french})
@ Zero-one loss: £(6,0) =1(0#0)
o Posterior risk:

r(@) = E[ue¢éniﬂ

- P(G#él@)
- 1—P(e:é|@)
= 1-p(0]D)

e Bayes action is

6 = argmaxp(0]D)
0€O

e This 0 is called the maximum a posteriori (MAP) estimate.
@ The MAP estimate is the mode of the posterior distribution.
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Bayesian Decision Theory

Bayesian Point Estimation: Custom Loss Function

@ Suppose O is discrete (e.g. © = {english, french})
e Loss function £(0,0):

{(french,english) = 10
{(english,french) = 1

(english,english) = 0
{(french,french) = 0

o Posterior risk:
r(french) = 10p(english | D)+ 0p (french | D)
r(english) = 1p(french| D)+ 0p (english | D)
e Bayes action is french iff r(french) > r(english), i.e. when

pl(english | D) - 1
p(french | D) 10°
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Bayesian Conditional Models

@ Input space X =R Output space Y =R

o Conditional probability model, or likelihood model:
{p(ylx,6)]6 €0}

e Conditional here refers to the conditioning on the input x.
e Means that x's are known and not governed by our probability model.
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Bayesian Regression

Gaussian Regression Model

e Input space X =R¢ Output space Yy =R

@ Conditional probability model, or likelihood model:
ylx,0 ~ N(QTX,O'2),

for some known o2 > 0.
e Parameter space ® =RY.
o Data: D ={(x1,y1),..., (Xn, yn)}

o Write y = (y1,..., yn) and x = (xq,..., Xn).
e Assume y;'s are conditionally independent, given x and 6.
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Bayesian Regression

Gaussian Likelihood
@ The likelihood of 0 € © for the data D is

n
plylx,0) = Hp(y,- | x;,0) by conditional independence.
i=1

R 1! (yi—07x;)?
‘H[om“p<‘ 202 ﬂ

i=1

@ Recall from the GLM lecture! that the MLE is

Oue = aregnigjxmylx,e)
€
n
= argminZ(y,—eTx,)2
0€cRd i=1

Ihttps://davidrosenberg.github.io/m12016/docs/8.Lab.glm.pdf, slide 5.
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Bayesian Regression

Priors and Posteriors

@ Choose a Gaussian prior distribution p(0) on ©:
0 ~N(0,Zp)

for some covariance matrix Ly > 0 (i.e. Xg is spd).
o Posterior distribution

p61D) = p(O]x,y)
= plylx,0)p(6)/ply)
o ply[x,0)p(6)

_ H[ . exp(—(yi_zeo_zxi)2>] (likelihood)

i=1

1
x |27Eo| /2 exp (—267—2516)) (prior)
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Bayesian Regression

Example in 1-Dimension

@ Input space X =[—1,1] Output space Y =R

@ Basic Gaussian regression model:
y=wy+wix+g,

where € ~N(0,0.22).
e Written another way, the likelihood model is

yIx,0=(wy,w) ~ N(W0+W1x, 0.22).
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Bayesian Regression

Example in 1-Dimension

o Prior distribution: 0 = (wo, w1) ~N(0,3/)

prior/posterior data space
1 1
w1 Y
0 0
-1 -1
- -1 0 x 1

Bishop’s PRML Fig 3.7
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Bayesian Regression

Example in 1-Dimension

o Consider y and x related as y = wo + wyx + ¢, where £ ~N(0,0.22).
@ Conditional probability model, or likelihood model:

yIx,0=(wyw) ~ N(W0+W1X,O.22).
e Prior distribution: 6 = (wo, wy) ~N(0,3/)

prior/posterior data space
1
w Y
0 0
-1 -1
41 0 g ! -1 0 z 1

@ On right, plots of y = wp +wix for random (wp, w1) ~ p(0) =N(0, 5/).

Bishop’s PRML Fig 3.7
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Bayesian Regression

Example in 1-Dimension: 1 Observation

il 0 qpp 1 o 0 oz 1

@ On left, the white cross indicates the true parameter values.

@ On right, the blue circle indicates the training observation.

Bishop’s PRML Fig 3.7
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Bayesian Regression

Example in 1-Dimension: 2 and 20 Observations

1 1
un 4
0 0 O,
-1 -1
- -1 0 =z 1
1 1
w1 (4
0 0 o Q3
o
o ©
-1 -1
-1 0 qg 1 -1 0z 1

Bishop’s PRML Fig 3.7
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Predictive Distribution

@ Given a new input point Xpew, how to predict ynew ?

@ Predictive distribution

p(}’new | Xnew: ®)
- Jp(ynew | Xnew: 8, D)p(8 | D) B

= JP(Ynew | Xnew, 0)p(0 | D) dO

e For Gaussian regression, posterior and predictive distributions have
closed forms.
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Bayesian Regression

Closed Form for Posterior

e Model:
0 ~ N(0,%)
yilx,0 iid. N(OTx;,0°)
@ Design matrix X Response column vector y

o Posterior distribution is a Gaussian distribution:
0D ~ N(up, Zp)

T = (0 2XTX+15h) "
wp = o IpXTy

@ Posterior Variance Lp gives us a natural uncertainty measure.

See Rasmussen and Williams' Gaussian Processes for Machine Learning, Ch 2.1.
http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

David Rosenberg (New York University)| DS-GA 1003 April 22, 2015

28 / 46


http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

Bayesian Regression

Closed Form for Posterior

o Posterior distribution is a Gaussian distribution:
01D ~ N(up, Zp)
Sp o= (02XTX+15Y)7"
up = o 2LpX'y

@ The MAP estimator and the posterior mean are given by

up = (XTX+02551) ' XTy

o Look familiar?
. . 2
e For the prior variance Lo = 5/, we get

-1
wp = (XTX+A) "Xy,
which is of course the ridge regression solution.
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Posterior Mean and Posterior Mode (MAP)

2

o Posterior density for Lo = 5-1:
A 2\ T (i —07x)?
pIO1D) o exp sl >UP(‘20
prior likelihood

e To find MAP, sufficient to minimize the log posterior:

Omap = argmin[—logp(0 | D)]
0cRd
n
= argminZ(y,——GTx,-)z—i-7\H9H2
0eR? =7 —~
log-prior
log-likelihood

@ Which is the ridge regression objective.
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Bayesian Regression

Closed Form for Predictive Distribution

e Model:

0 ~ N(0,Z)
yilx,0 iid. N(0Tx;,0?)

@ Predictive Distribution
p()/new | Xnew :D) = JP(Ynew | Xnew 9)[)(9 | D) do.

o Averages over prediction for each 0, weighted by posterior distribution.
@ Closed form:

Ynew | Xnew: D~ N(nneWy 0-new)

T
Hnew = Hp Xnew
T 5 2
Ohew = Xnew&PXnew + \0—/_/
—_——

from variance in @  inherent variance in y
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Bayesian Regression

Predictive Distributions

@ With predictive distributions, can draw error bands:

output, y

input, x

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)
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Bayesian Predictive Distributions vs GLMs

@ Gaussian regression with MLE, from our GLM lecture:

e produces a Gaussian for each input x.

x—N (XTeMLE , 0'2)

@ Bayesian predictive distributions:

e produce a Gaussian for each input x

~—

inherent variance in y

T T 2
x—=N Gridgex, XnewZPXnew o
—_————

from variance in 0

@ In Bayesian version

e equivalent to using a regularized least squares fit
e variance has additional piece from uncertainty in 6
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Coin Flipping

e Parameter space 6 € © =0, 1]:

P(Heads | ©) = 0.

e Data D={H,H, T, T, T, T, T,H,..., T}

e np: number of heads
e ny: number of tails

o Conditional Independence Assumption:

e Conditioned on 0, repeated flips are independent

o Likelihood model (Bernoulli Distribution):

p(D]6)=0"(1-0)"

o (probability of getting the flips in the order they were received)
DS-GA 1003 April 22, 2015
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Coin Flipping: Beta Prior

@ Prior:

® ~ Beta(h,t)
p(0) o 0 1(1—0)" 1!

@ Mean of Beta distribution:

h

EO = ——
h+t

@ Interpret h and t as the number of heads/tails received in a prior
experiment.

o Then EB is the obvious MLE and plug-in estimate for 0.

o For fixed EO, Var(0) decreases as number of flips n = h+t grows.
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Coin Flipping: Posterior

@ Prior:
® ~ Beta(ht)
p(0) o 0 1(1—0)"1
o Likelihood model:

p(D16)=0"(1-0)"

o Posterior density:

p(O[D) o p(0)p(D]6)

x O l1—g)ftxem(1—0)
eh71+nh (1_e)t—1+nt
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Beta-Binomial Model

Posterior is Beta

@ Prior:
® ~ Beta(ht)
p(6) o 0" 1(1-0)""
e Posterior density:

p(0]D) o Of1Fm(p_g)tttm

e So

0|D ~ Beta(h+np t+n:)

@ It's as though we continued our experiment by adding more flips.
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Conjugate Priors

Conjugate Prior Examples

@ A prior is conjugate for a likelihood model if the posterior is in the
same “family” as the prior.

@ If prior is a beta distribution, and likelihood model is a Bernoulli
distribution, then posterior is a beta distribution.

o Prior and posterior in the same family —> Beta is a conjugate prior
for Bernoulli

@ If prior is a Gaussian distribution, and likelihood model is a Gaussian
distribution, then posterior is a Gaussian distribution.

o Prior and posterior in the same family =—> Gaussian is a conjugate
prior for Gaussian

Conjugacy of the prior is really a statement about the prior family.
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Conjugate Prior Family

Let 7t be a family of prior distributions on ©.

Let P be likelihood model with parameter space ©.

We say that 7t is conjugate to P if for any prior in 71, the posterior is
always in 7.

Trivial Example:

o The family of all probability distributions is conjugate to any likelihood
model.

@ Every exponential family has a nontrivial conjugate prior family. (KPM
Section 9.2)
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Bayesian Naive Bayes

Naive Bayes: A Generative Model for Classification

o X = {(X]_,XZ,X3,X4) {0, 1}4)} Y ={0,1} be a class label.

o Consider the Bayesian network depicted below:

Y

Xl. XQ X3 X4

@ BN structure implies joint distribution factors as:

p(x1,x2,x3,xa,y) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)p(xaly)

o Features Xi,..., Xy are independent given the class label Y.

KPM Figure 10.2(a).
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Bayesian Naive Bayes

Parameterized Expression for Joint Distribution

o Parameters:
P(Yy=1)=6, P(X;=11Y=1)=0x P(X;=1]Y =0)=0
e Joint distribution is
p(xi, ... Xd,y)
= py) ][ rlx
i=1
= (6,)"(1-0y)

X H(eil)yxi (1—9;1)y(1_xi) (eio)(l_}’)xi (l_eio)(l—y)(l—x,-)
i=1

ly)
1—y
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Bayesian Naive Bayes

Maximum Likelihood Estimators for Naive Bayes

@ Training set D = {(Xl,yl),---(X",yn)}-

@ Obvious “plug-in" estimators for the Naive Bayes model are also MLEs:

R 1 <& .
P(Y=1) =~ ey:EZuy':n
i=1

. Y7 1y =1and X =1)
PXi=1|Y=1) ~ 0j;==—- d !
( | ) 1 ST =1)
N S 1(y/=0and x =1)
P(X;=1|Y=0) = 0jg="—2 d !
( ) 0 ST A7 =0)
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Example: SPAM Classification
e Label Y € Y ={SPAM,HAM}.

e Features X; €{0,1}.
e Bag of words representation:

Xi = 1(Email contains word "Private Jet")

o After parameter estimation, prediction done with
d
p(SPAM|x) o p(SPAM) H (x; | SPAM).

@ Each p(x;|y) is the estimated probability that x; would be observed
(or not) in a SPAM message.

o Issue: What if we never see X; =1 when Y =SPAM in D?
e Then whenever we see X; =1, we will predict p(SPAM | x) =0.
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Bayesian Naive Bayes

The Zero Count Issue

e If any conditional probabilities P(X; = x; | y) get estimated as 0,
o we'll predict 0 probability for some y whenever x; is observed.

@ This is bad:
o Never want to predict probability 0 if something is possible.

@ Worse: This occurrence is not unusual at all for small sample sizes or
rare features.
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Laplace Smoothing

@ One traditional fix to the 0 count issue is called Laplace Smoothing.
@ Idea is to add 1 to every empirical count.
@ To estimate P(X; =1|Y =1), use
A 1—|—ZJ'-7:11(yj =1land x/ =1)
il 1+ZJ":11(}/J:1)
@ The added 1 is called a pseudocount.
@ Like assuming every outcome that can occur was observed at least

once.

@ Seems to solve the problem — but is there a more principled approach?
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Bayesian Naive Bayes

Bayesian Naive Bayes

o Parameters:
P(Yy=1)=6, PXi=1|Y=1)=06x P(X;i=1]Y =0)=0;
@ Put a Beta prior distribution on each parameter.

@ Option 1: Use posterior mean as point estimate for each parameter,
then continue as before.

e Laplace smoothing is a special case, in which priors are all Beta(1,1).
e Option 2: Go full Bayesian.
o No parameter estimates. Base everything on posterior 6 | D.

@ Predict with the predictive distribution:
ylx,D

o Recall, this is integrating out the parameter 0 w.r.t. the posterior
distribution.
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