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Dimension Reduction

We generally do not want to feed a large number of features
directly into a machine learning algorithm because:

They are expensive to store.

They slow down computations.

Large samples are required to avoid overfitting.

In algorithms like k-nearest neighbors, distances in high
dimensions are distorted.

Principal component analysis is one method of reducing the
number of dimensions in the raw data.
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Intuition: Change of Basis

To capture as much information from data as possible in a low
number of dimensions, we find a basis of principal components.
Each principal component is the vector along which variance is
maximized, conditioning on it being orthogonal to all preceding
principal components.

Figure: Courtesy of https://onlinecourses.science.psu.edu/stat857
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Variance of Projection

Let φ(xi ) be the feature vector of xi , and suppose that data has
been centered and normalized in the feature space. The variance
of the projection of φ(x) onto a unit vector w is

1

n

n∑
i=1

‖Pw(φ(xi ))‖2 =
1

n

n∑
i=1

∥∥∥∥φ(xi ) · w
w · w

w

∥∥∥∥2
=

1

n

n∑
i=1

(wTφ(xi )φ(xi )
Tw)

= wT Ê(φ(x)φ(x)T )w = wTCw,

where C = 1
nXTX is the empirical covariance matrix of the dataset

X. As C is positive semi-definite, it has a full orthonormal set of
eigenvectors with eigenvalues that are all real and positive.
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First Principal Component

The direction along which variance is maximized is the solution to

max
w

wTCw, subject to ‖w‖ = 1,

or equivalently,

max
w

wTCw

wTw
.

Solving with Lagrange multipliers gives that

Cw = λw,

so that w is an eigenvector of C. Since

wTCw = wTλw = λ,

we see that the first principal component w1 is in fact the
eigenvector corresponding to the largest eigenvalue of C.
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Further Principal Components

To find the k-th principal component, consider the deflated matrix

Ck = C−
k−1∑
i=1

Cwiw
T
i .

As Ckwj = 0 for j < k , deflation reduces the first k − 1 eigenvalues
of C to 0. The eigenvector corresponding to the largest remaining
eigenvalue is then the k-th principal component of X.

Let W be the matrix whose columns are the wj . Since φ(xi ) · wj

gives the signed magnitude of Pwjφ(xi ), the score matrix

M = XW

gives the coordinates of the data matrix w.r.t the wj .
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Singular Value Decomposition

PCA is often performed via singular value decomposition,
because forming XTX would not be required:

Theorem

For any matrix X ∈ Rn×d , there exist orthogonal matrices
U ∈ Rn×n, W ∈ Rd×d and (rectangular) diagonal matrix
Σ ∈ Rn×d with non-negative entries such that

X = UΣWT .

Since XTX = WΣTΣWT ,

The diagonal entries σj of Σ, known as the singular values of
X, are square roots of the eigenvalues of XTX. By
convention, these are listed in descending order.

The columns of W are the eigenvectors of XTX.
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PCA in terms of SVD

The score matrix M can be expressed as

M = XW = UΣWTW = UΣ.

To consider only the first k principal components, we compute

Mk = XWk = UΣk = UkΣk ,

where the subscript k denotes the matrix formed by zeroing out all
columns after the k-th. The proportion of variance explained by
the first k principal components is

∑k
j=1 σ

2
j /
∑d

j=1 σ
2
j .

It can be shown that UΣkWT is the closest rank-k approximation
to X in the Frobenius norm, so that Mk is the k-column matrix
with smallest reconstruction error ‖MWT −Mk(Wk)T‖F .
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SVD and Linear Regression

Recall the objective function of linear regression

(y −Xβ)T (y −Xβ),

which, assuming that XTX is invertible, has solution

β̂ls = (XTX)−1XTy.

Substituting UΣWT for X,

ŷls = Xβ̂ls = UΣWT (WΣTΣWT )−1WΣTUTy

= UΣ(ΣTΣ)−1ΣTUTy =
d∑

j=1

uju
T
j y.

Hence ŷls is a linear combination of projections of y onto the uj ,
which themselves can be interpreted as normalized projections of X
onto the j-th principal component of the data.
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SVD and L2 Regularization

Now recall the objective function of ridge regression

(y −Xβ)T (y −Xβ) + λXTX,

which has solution

β̂ridge = (XTX + λI)−1XTy.
Since

ŷridge = Xβ̂ridge = UΣWT (WΣTΣWT + λI)−1WΣTUT

= UΣ(ΣTΣ + λI)−1ΣTUTy =
d∑

j=1

uj

σ2j
σ2j + λ

uT
j y,

more shrinkage is applied along principal components with less
variance. Finally, let Hλ be the hat matrix of the regression. As

df(λ) := tr(Hλ) =
d∑

j=1

σ2j
σ2j + λ

,

regularization reduces the effective number of parameters.
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Example: User Study

Task: Highlight how different demographic groups (e.g. male vs.
female) use an app differently.

One approach:

1 Perform PCA (via SVD) on the data.

2 Plot the data along the first two or three principal
components, i.e. plot the columns of UkΣk for k = 2 or 3.

3 Interpret results according to which features are weighted
most heavily in these components.
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User Study: Visualization
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User Study: Interpreting Results

Suppose that the raw features were

(profile length, # pictures, # friends, frequency of log-ins, average
session length, # messages initiated, # messages responded),

with
w1 = (0.71, −0.42, −0.34, −0.17, −0.16, −0.02, 0.38)and

w2 = (−0.01, 0.13, 0.42, −0.84, 0.17, −0.11, 0.23).

Then “profile length” and “frequency of log-ins” are resp. the
features weighted most heavily in w1 and w2. Thus the previous
plot suggests that

Female users tend to have longer profiles.

Female users tend to log in more frequently (since the weight
of the feature in w2 is negative, being more negative along w2

is correlated with being larger in the feature).
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Supervised Dimension Reduction

Performing PCA on user-level data is

a good first pass at exploring differences between user groups
as SVD only needs to be done once for multiple sets of
comparisons, but

principal components highlight features that generate maximal
variance among all users, not necessarily between the groups
we are interested in comparing.

When the goal of dimension reduction is maximal separation
between labeled classes, we seek projections that maximize
between-class variance (as normalized by within-class variance).
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Fisher’s Linear Discriminant Analysis

Recall the PCA optimization problem

max
w

wTCw

wTw
, where C =

1

n
XTX.

Suppose now we have classes C1, . . . , CN , where Ci has ni data
points with centroid µi in the feature space, and let µ be the
center of all data points. The Fisher-LDA optimization problem is

max
w

wTSbw

wTSww
,

where Sb and Sw are between- and within-class scatter matrices

Sb =
N∑
i=1

ni (µi − µ)(µi − µ)T and Sw =
N∑
i=1

∑
x∈Ci

(x− µi )(x− µi )T .

Its solutions can be shown to be the eigenvectors of S−1w Sb, in
descending order of the corresponding eigenvalues.
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