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Example: Old Faithful Geyser

Old Faithful Geyser Eruptions
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@ Looks like two clusters.

@ How to find these clusters algorithmically?
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k-Means: By Example

o Standardize the data.

@ Choose two cluster centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(a).
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K-Means Clustering

k-means: by example

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).
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K-Means Clustering

k-means: by example

@ Compute new class centers.

2
0 ° o
$9X,
o®
o
-2
-2 0 2

From Bishop's Pattern recognition and machine learning, Figure 9.1(c).
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K-Means Clustering

k-means: by example

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).
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K-Means Clustering

k-means: by example

@ Compute cluster centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(e).
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K-Means Clustering

k-means: by example

@ lterate until convergence.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(i).
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K-Means Clustering

k-means: formalization

Dataset D ={x1,...,x,} € RY
Goal (version 1): Partition data into k clusters.

Goal (version 2): Partition R? into k regions.

Let pi,...,ux denote cluster centers.
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K-Means Clustering

k-means: formalization

@ For each x;, use a one-hot encoding to designate membership:
r=1(0,0,...,0,0,1,0,0) € R

o Let
ric = 1(x; assigned to cluster c).
@ Then

ri=(ri1, ri2, ... rik) -
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K-Means Clustering

k-means: objective function

Find cluster centers and cluster assignments minimizing

n k
S =3 > riellxi—mell”

i=1c=1

Is objective function convex?

What's the domain of J?

r {0, 1}"Xk, which is not a convex set...

So domain of J is not convex = J is not a convex function

We should expect local minima.

Could replace || - ||> with something else:

e e.g. using ||-|| (or any distance metric) gives k-medoids.
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K-Means Clustering

k-means algorithm

@ For fixed r (cluster assignments), minimizing over p is easy:

n k
Jrw = 3 rellg—nel?

i=1c=1

= erlcuxl lecH2

c=1i=1

=J

JC(}J‘C) = Z ||Xi_uc||2

{i|x;belongs to cluster c}
@ J. is minimized by

e = mean ({x; | x; belongs to cluster c})
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K-Means Clustering

k-means algorithm

@ For fixed p (cluster centers), minimizing over r is easy:

n k
Jrw = 3 relxi— el

i=1c=1
@ For each i/, exactly one of the following terms is nonzero:
rinllxi —wal|?, riallx — w2l il — 12
o Take

Fie = 1(c = argmin x; — 1y %)
J

@ That is, assign x; to cluster ¢ with minimum distance

xi = pell®
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K-Means Clustering

k-means algorithm (summary)

@ We will use an alternating minimization algorithm:
@ Choose initial cluster centers = (u1,..., ).
o e.g. choose k randomly chosen data points
@ Repeat
@ For given cluster centers, find optimal cluster assignments:

r’_new =1(c =argmin||x; — llj||2)
J

@ Given cluster assignments, find optimal cluster centers:

ue =argmin; ) [lxi— el
mER? il r=1)
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K-Means Clustering

k-Means Algorithm: Convergence

Note: Objective value never increases in an update.

o (Obvious: worst case, everything stays the same)

o Consider the sequence of objective values: J1, b, J3,...

e monotonically decreasing
e bounded below by zero

Therefore, k-Means objective value converges to inf; J;.

Reminder: This is convergence to a local minimum.

Best to repeat k-means several times, with different starting points
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K-Means Clustering

k-Means: Objective Function Convergence

@ Blue circles after “E” step: assigning each point to a cluster

1000 x
500 \

@ Red circles after “M” step: recomputing the cluster centers

4
From Bishop's Pattern recognition and machine learning, Figure 9.2.
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k-Means Algorithm: Standardizing the data

e With standardizing:

Old Faithful Geyser Eruptions
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k-Means Algorithm: Standardizing the data

e Without standardizing:

Old Faithful Geyser Eruptions
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k-Means: Failure Cases

k-Means: Suboptimal Local Minimum

@ The clustering for k =3 below is a local minimum, but suboptimal:
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From Sontag's DS-GA 1003, 2014, Lecture 8.
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Probabilistic Model for Clustering

@ Let's consider a generative model for the data.
@ Suppose

@ There are k clusters.
@ We have a probability density for each cluster.

e Generate a point as follows
@ Choose a random cluster z €{1,2, ..., k}.
o Z~Multi(rty, ..., 7).
@ Choose a point from the distribution for cluster Z.
o X|Z=z~p(x|2z).
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Gaussian Mixture Model (k = 3)

© Choose Z €{1,2,3}~Multi (3,3, 3).
© Choose X|Z=z~N(X|u,x,).

Mixture of Three Gaussians
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Gaussian Mixture Model: Joint Distribution

@ Factorize joint according to Bayes net:

VA
p(x,z) = p(z)p(x]|z)
= 1 N(x[pz L)
@ 71, is probability of choosing cluster z.
@ X | Z =z has distribution N(u,, XZ,).
X @ z corresponding to x is the true cluster assignment.
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Latent Variable Model

@ Back in reality, we observe X, not (X, Z).

@ Cluster assignment Z is called a hidden variable.

Definition
A latent variable model is a probability model for which certain variables
are never observed.

@ e.g. The Gaussian mixture model is a latent variable model.
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Model-Based Clustering

@ We observe X = x.

@ The conditional distribution of the cluster Z given X = x is

p(z| X =x) = p(x,z)/p(x)

@ The conditional distribution is a soft assignment to clusters.
@ A hard assignment is

¥ = argmin P(Z =2z | X =x).

@ So if we have the model, clustering is trival.

David Rosenberg (New York University)| DS-GA 1003 June 15, 2015 24 / 43



Estimating/Learning the Gaussian Mixture Model

We'll use the common acronym GMM.
What does it mean to “have” or “know” the GMM?

@ It means knowing the parameters

Cluster probabilities : = (7m,...,70%)
Cluster means: w=(p1,..., k)
Cluster covariance matrices: L =(Z1,...%)

We have a probability model: let's find the MLE.
Suppose we have data D ={xq,..., xa}-
We need the model likelihood for D.
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Gaussian Mixture Model: Marginal Distribution

@ Since we only observe X, we need the marginal distribution:
k
plx) = > plxz)
z=1

k
= ZT[ZN(X| Hz:zz)
z=1

@ Note that p(x) is a convex combination of probability densities.

@ This is a common form for a probability model...
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Gaussian Mixture Models

Mixture Distributions (or Mixture Models)

Definition

A probability density p(x) represents a mixture distribution or mixture
model, if we can write it as a convex combination of probability
densities. That is,

k
p(x) =) wpi(x),
i=1

where w; > 0, Zf'(:l w; =1, and each p; is a probability density.

@ In our Gaussian mixture model, X has a mixture distribution.
@ More constructively, let S be a set of probability distributions:

© Choose a distribution randomly from S.
@ Sample X from the chosen distribution.

@ Then X has a mixture distribution.

David Rosenberg (New York University)| DS-GA 1003 June 15, 2015 27 / 43



Estimating/Learning the Gaussian Mixture Model

@ The model likelihood for D ={xq,..., Xp} 1S

n

LmwD) = []px)

i=1

n k
= I3 ANl 5.

i=1z=1

@ As usual, we'll take our objective function to be the log of this:

J7TH, Z|0g{Z7Tz XI|}‘LZV z)}
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Properties of the GMM Log-Likelihood

e GMM log-likelihood:

n k
Jmwx) = Zlog{anN(x,-mz,zz)}
i=1 z=1

@ Let's compare to the log-likelihood for a single Gaussian:

D logN (x| %)
i=1

n

~nd n 1 . re—1(o
= g2 —logltl—5 ) (x—w)'E T ix—)

@ For a single Gaussian, the log cancels the exp in the Gaussian density.
e = Things simplify a lot.
@ For the GMM, the sum inside the log prevents this cancellation.

e — Expression more complicated. No closed form expression for MLE.
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities : = (7m1,...,70%)
Cluster means: W= (..., 1)
Cluster covariance matrices: L =(X,...%)

that are at a local minimum.

@ What happens if we shuffle the clusters? e.g. Switch the labels for
clusters 1 and 2.

o We'll get the same likelihood. How many such equivalent settings are
there?

@ Assuming all clusters are distinct, there are k! equivalent solutions.

@ Not a problem per se, but something to be aware of.
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Singularities for GMM

o Consider the following GMM for 7 data points:

p(z)

T

o Let 02 be the variance of the skinny component.

e What happens to the likelihood as 02 — 07?

@ In practice, we end up in local minima that do not have this problem.
o Or keep restarting optimization until we do.

@ Bayesian approach or regularization will also solve the problem.

From Bishop's Pattern recognition and machine learning, Figure 9.7.

David Rosenberg (New York University)| DS-GA 1003 June 15, 2015 31 /43



Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on
n k
Jmuwg) = —Zlog{anN(x,-mz,zz)}?
i=1 z=1

@ Can be done — but need to be clever about it.
o Each matrix Z1,...,Zx has to be positive semidefinite.
@ How to maintain that constraint?

o Rewrite X; = I\/I;I\/I,-T, where M; is an unconstrained matrix.

o Then Z; is positive semidefinite.
@ But we actually prefer positive definite, to avoid singularities.
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Issues with MLE for GMM

Cholesky Decomposition for SPD Matrices

Theorem

Every symmetric positive definite matrix A€ R?*9 has a unique Cholesky
decomposition:

A=LLT,

where L a lower triangular matrix with positive diagonal elements.

@ A lower triangular matrix has half the number of parameters.
@ Symmetric positive definite is better because avoids singularities.
@ Requires a non-negativity constraint on diagonal elements.

e e.g. Use projected SGD method like we did for the Lasso.
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MLE for Gaussian Model

@ Let's start by considering the MLE for the Gaussian model.
@ For data D ={xq,...,x,}, the log likelihood is given by

n

ZlogN xi |, )Z—flog(27r)—fIogIZI—fZ(X;—u)’fl(x,-—u)-
i=1

@ With some calculus, we find that the MLE parameters are
1 n
HMLE = E.in

Ime = *Z — umie) (6 — tme) "

@ For GMM, If we knew the cluster assignment z; for each x;,

e we could compute the MLEs for each cluster.
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The EM Algorithm for GMM

Cluster Responsibilities: Some New Notation

@ Denote the probability that observed value x; comes from cluster j by

Yi=P(Z=jIX=x).

The responsibility that cluster j takes for observation x;.

Computationally,

Y, = P(Z=jIX=x).
= p(Z=j,X=x)/p(x)

N (% | 1, L))
Zﬁ:lﬂcN(Xi | Hc:zc)

The vector (y,l . yf‘) is exactly the soft assignment for x;.

Let nc =) [ ;v§ be the number of points “soft assigned” to cluster c.
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EM Algorithm for GMM: Overview

@ |Initialize parameters p, X, 7.

@ "E step”. Evaluate the responsibilities using current parameters:

Y= kajN(Xi |1y, %)) |
Zczl e N (X | e, Ze)
fori=1,...,nand j=1,... k.
© "M step’. Re-estimate the parameters using responsibilities:

n
new __ 1 co.
He = YiXi
c -
i=1
n
ynew 1 c T
c = ;ZY; (xi — umee) (xi — pmce)
¢i=1
Ne
aew — ¢
¢ n

@ Repeat from Step 2, until log-likelihood converges.
DS-GA 1003 June 15, 2015

36 / 43



The EM Algorithm for GMM

EM for GMM

@ Initialization
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From Bishop's Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

o First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o First soft assignment:

-2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 5 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 20 rounds of EM:
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From Bishop's Pattern recognition and machine learning, Figure 9.8.
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Relation to K-Means

EM for GMM seems a little like k-means.
In fact, there is a precise correspondence.
First, fix each cluster covariance matrix to be o?2/.

As we take 02 — 0, the update equations converge to doing k-means.

If you do a quick experiment yourself, you'll find

e Soft assignments converge to hard assignments.
e Has to do with the tail behavior (exponential decay) of Gaussian.
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Possible Topics for Next Time

@ In last lecture, will give high level view of several topics.
o Possibilities:

General EM Algorithm.

Bandit problems.

LDA / Topic Models

Ranking problems.

Collaborative Filtering.

Generalization bounds.

Sequence models (maximum entropy Markov models, HMMs)
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