Information Theory

David Rosenberg

New York University

June 15, 2015
Consider a discrete random variable X.

How much “information” do we gain from observing X?

Information \approx “degree of surprise” from observing $X = x$.

If we know $\Pr(X = 0) = 1$, then observing $X = 0$ gives no information.

If we know $\Pr(X = 0) = .999$:

- Observing $X = 0$ gives little information.
- Observing $X = 1$ gives a lot of surprise / “information”

Information measure $h(x)$ should depend on $p(x)$:

- Smaller $p(x) \implies$ More information \implies Larger $h(x)$
Shannon Information Content of an Outcome

Definition

Let $X \in \mathcal{X}$ have PMF $p(x)$. The Shannon information content of an outcome x is

$$h(x) = \log \left(\frac{1}{p(x)} \right),$$

where the base of the log is 2. Information is measured in bits. (Or nats if the base of the log is e.)

- Less likely outcome gives more information.
- Information is **additive** for independent events:
 - If X and Y are independent,
 $$h(x, y) = -\log p(x, y) = -\log [p(x)p(y)]$$
 $$= -\log p(x) - \log p(y)$$
 $$= h(x) + h(y)$$
Definition

Let $X \in \mathcal{X}$ have PMF $p(x)$. The entropy of X is

$$H(X) = \mathbb{E}_p \log \left(\frac{1}{p(X)} \right)$$

$$= - \sum_{x \in \mathcal{X}} p(x) \log p(x),$$

using convention that $0 \log 0 = 0$, since $\lim_{x \to 0^+} x \log x = 0$.

- Entropy of X is the expected information gain from observing X.
- Entropy only depends on distribution p, so we can write $H(p)$.
Definition

A **binary source code** C is a mapping from \mathcal{X} to finite 0/1 sequences.

- Consider r.v. $X \in \mathcal{X}$ and binary source code C defined as:

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>$C(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>111</td>
</tr>
</tbody>
</table>
Expected Code Length

- Consider r.v. \(X \in \mathcal{X} \) and binary source code \(C \) defined as:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(p(x))</th>
<th>(C(x))</th>
<th>(\log \frac{1}{p(x)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>(\log_2 2 = 1)</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>10</td>
<td>(\log_2 4 = 2)</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td>110</td>
<td>(\log_2 8 = 3)</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>111</td>
<td>(\log_2 8 = 3)</td>
</tr>
</tbody>
</table>

- The entropy is \(H(X) = \mathbb{E} \log [1/p(x)] \):

\[
H(X) = \frac{1}{2} (1) + \frac{1}{4} (2) + \frac{1}{8} (3) + \frac{1}{8} (3) = 1.75 \text{ bits.}
\]

- The expected code length is

\[
L(C) = \frac{1}{2} (1) + \frac{1}{4} (2) + \frac{1}{8} (3) + \frac{1}{8} (3) = 1.75 \text{ bits.}
\]
Prefix Codes

- A code is a **prefix code** if no codeword is a prefix of another.
- Prefix codes can be represented on trees:

 ![Tree Diagram]

 Each leaf node is a codeword.
- It’s encoding represents the path from root to leaf.

From David MacKay’s *Information Theory, Inference, and Learning Algorithms*, Section 5.1.
For $X \sim p(x)$, we get best compression with codeword lengths

$$\ell^*(x) \approx -\log p(x).$$

Optimal bit length of x is the Shannon Information of x.

Then the expected codeword length is

$$L^* = \mathbb{E}[-\log p(X)] = H(X)$$

Entropy $H(X)$ gives a lower bound on coding performance.

Shannon’s Theorem says we can achieve $H(X)$ within 1 bit.
Shannon’s Source Coding Theorem

Theorem (Shannon’s Source Coding Theorem)

The expected length L of any binary prefix code for r.v. X is at least $H(X)$:

$$L \geq H(X).$$

There exist codes with lengths $\ell(x) = \lceil -\log_2 p(x) \rceil$ achieving

$$H(X) \leq L < H(X) + 1.$$

- **Notation** $\lceil x \rceil = \text{ceil}(x) = (\text{smallest integer } \geq x)$
Shannon’s Source Coding Theorem: Summary

- For any $X \sim p(x)$, \exists code with $L \approx H(X)$.
- Get arbitrarily close to $H(X)$ by grouping multiple X’s and coding all at once.
- If we know the distribution of X, we can code optimally.
 - e.g. Use Huffman codes or arithmetic codes.
- What if we don’t know $p(x)$, and we use $q(x)$ instead?
Coding with the Wrong Distribution: Core Calculation

- Allow fractional code lengths: \(\ell_q(x) = -\log q(x) \)
- Then expected length for coding \(X \sim p(x) \) using \(\ell_q(x) \) is

\[
L = \mathbb{E}_{X \sim p(x)} \ell_q(X) \\
= -\sum_x p(x) \log q(x) \\
= \sum_x p(x) \log \left[\frac{p(x)}{q(x)} \frac{1}{p(x)} \right] \\
= \sum_x p(x) \log \frac{p(x)}{q(x)} + \sum_x p(x) \log \frac{1}{p(x)} \\
= KL(p \parallel q) + H(p),
\]

where \(KL(p \parallel q) \) is the Kullback-Leibler divergence between \(p \) and \(q \).
The Kullback-Leibler or "KL" Divergence is defined by

\[KL(p\|q) = \mathbb{E}_p \log \left(\frac{p(X)}{q(X)} \right). \]

- \(KL(p\|q)\): #\text{(extra bits)} needed if we code with \(q(x)\) instead of \(p(x)\).

- The cross entropy for \(p(x)\) and \(q(x)\) is defined as

\[H(p, q) = -\mathbb{E}_p \log q(X). \]

- \(H(p, q)\): #\text{(bits)} needed to code \(X \sim p(x)\) using \(q(x)\).

- Summary:

\[H(p, q) = H(p) + KL(p\|q). \]
Theorem

If we code $X \sim p(x)$ using code lengths $\ell(x) = \lceil -\log_2 q(x) \rceil$, the expected code length is bounded as

$$H(p) + KL(p\|q) \leq \mathbb{E}_p \ell(X) < H(p) + KL(p\|q) + 1.$$

- So with an implementable code (using integer codeword lengths), the expected code length is within 1 bit of what could be achieved with $\ell(x) = -\log_2 q(x)$.
- Proof is a slight tweak on the “core calculation”.
Jensen’s Inequality

Theorem (Jensen’s Inequality)

If \(f : \mathcal{X} \to \mathbb{R} \) is a \textit{convex} function, and \(X \in \mathcal{X} \) is a random variable, then

\[
\mathbb{E} f(X) \geq f(\mathbb{E}X).
\]

Moreover, if \(f \) is \textit{strictly convex}, then equality implies that \(X = \mathbb{E}X \) with probability 1 (i.e. \(X \) is a constant).

- e.g. \(f(x) = x^2 \) is convex. So \(\mathbb{E}X^2 \geq (\mathbb{E}X)^2 \). Thus

\[
\text{Var}X = \mathbb{E}X^2 - (\mathbb{E}X)^2 \geq 0.
\]
Gibbs Inequality (KL\((p\|q) \geq 0\))

Theorem (Gibbs Inequality)

Let \(p(x)\) and \(q(x)\) be PMFs on \(X\). Then

\[
KL(p\|q) \geq 0,
\]

with equality iff \(p(x) = q(x)\) for all \(x \in X\).

- KL divergence measures the “distance” between distributions.

- Note:
 - KL divergence **not a metric**.
 - KL divergence is **not symmetric**.
Gibbs Inequality: Proof

\[\text{KL}(p\|q) = \mathbb{E}_p \left[-\log \left(\frac{q(X)}{p(X)} \right) \right] \]

\[\geq -\log \left[\mathbb{E}_p \left(\frac{q(X)}{p(X)} \right) \right] \quad \text{(Jensen’s)} \]

\[= -\log \left[\sum_{\{x|p(x) > 0\}} p(x) \frac{q(x)}{p(x)} \right] \]

\[= -\log \left[\sum_{x \in X} q(x) \right] \]

\[= -\log 1 = 0. \]

- Since \(-\log\) is strictly convex, we have strict equality iff \(q(x)/p(x)\) is a constant, which implies \(q = p\).
- Essentially the same proof for PDFs.
Suppose $\mathcal{D} = \{x_1, \ldots, x_n\}$ is a sample from unknown $p(x)$ on X.

Hypothesis space: \mathcal{P} some set of distributions on X.

Idea: Find $q \in \mathcal{P}$ that minimizes $KL(p\|q)$:

$$\arg\min_{q \in \mathcal{P}} KL(p, q) = \arg\min_{q \in \mathcal{P}} E_p \left[\log \left(\frac{p(X)}{q(X)} \right) \right]$$

Don’t know p, so replace expectation by average over \mathcal{D}:

$$\arg\min_{q \in \mathcal{P}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{p(x_i)}{q(x_i)} \right) \right\}$$
Estimated KL-Divergence

- The estimated KL-divergence:

\[\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{p(x_i)}{q(x_i)} \right] \]

\[= \frac{1}{n} \sum_{i=1}^{n} \log p(x_i) - \frac{1}{n} \sum_{i=1}^{n} \log q(x_i). \]

- The minimizer of this over \(q \in \mathcal{P} \) is also

\[\arg \max_{q \in \mathcal{P}} \sum_{i=1}^{n} \log q(x_i). \]

- This is exactly the objective for the MLE.

- Minimizing KL between model and truth leads to MLE.