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Kullback-Leibler (KL) Divergence

Kullback-Leibler Divergence

Let p(x) and q(x) be PMFs on X.
How can we measure how “different” p and q are?

The Kullback-Leibler or “KL” Diverence is defined by

KL(p‖q) =
∑
x

p(x) log
p(x)

q(x)
.

(Assumes q(x) = 0 implies p(x) = 0.)

Can also write this as

KL(p‖q) = Ep log
p(X )

q(X )
,

where X ∼ p(x).
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Kullback-Leibler (KL) Divergence

Gibbs Inequality (KL(p‖q)> 0)

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on X. Then

KL(p‖q)> 0,

with equality iff p(x) = q(x) for all x ∈ X.

KL divergence measures the “distance” between distributions.

Note:

KL divergence not a metric.
KL divergence is not symmetric.

David Rosenberg (New York University) DS-GA 1003 June 15, 2015 3 / 29



Kullback-Leibler (KL) Divergence

Jensen’s Inequality

Theorem (Jensen’s Inequality)

If f : X→ R is a convex function, and X ∈ X is a random variable, then

Ef (X )> f (EX ).

Moreover, if f is strictly convex, then equality implies that X = EX with
probability 1 (i.e. X is a constant).

e.g. f (x) = x2 is convex. So EX 2 > (EX )2. Thus

VarX = EX 2−(EX )2 > 0.

Jensen’s inequality is used to prove Gibbs inequality (log(x) is strictly
concave).
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EM Algorithm for Latent Variable Models

Gaussian Mixture Model (k = 3)

1 Choose Z ∈ {1,2,3} ∼Multi
(1
3 ,

1
3 ,

1
3

)
.

2 Choose X | Z = z ∼ N (X | µz ,Σz).
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EM Algorithm for Latent Variable Models

Gaussian Mixture Model (k Components)

GMM Parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

Let θ= (π,µ,Σ).

Marginal log-likelihood

logp(x | θ) = log

{
k∑

z=1

πzN (x | µz ,Σz)

}
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EM Algorithm for Latent Variable Models

General Latent Variable Model

Two sets of random variables: Z and X .
Z consists of unobserved hidden variables.
X consists of observed variables.
Joint probability model parameterized by θ ∈Θ:

p(x ,z | θ)

Notation abuse
Notation p(x ,z | θ) suggests a Bayesian setting, in which θ is a r.v.
However we are not assuming a Bayesian setting. p(x ,z | θ) is just easier
to read than pθ(x ,z), once θ gets more complicated.
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EM Algorithm for Latent Variable Models

Complete and Incomplete Data

An observation of X is called an incomplete data set.
An observation (X ,Z ) is called a complete data set.

We never have a complete data set for latent variable models.
But it’s a useful construct.

Suppose we have an incomplete data set D= (x1, . . . ,xn).
To simplify notation, take X to represent the entire dataset

X = (X1, . . . ,Xn) ,

and Z to represent the corresponding unobserved variables

Z = (Z1, . . . ,Zn) .
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EM Algorithm for Latent Variable Models

Log-Likelihood

The log-likelihood of θ for observation X = x is

logp(x | θ) = log

{∑
z

p(x ,z | θ)

}
.

(We write discrete case – everything same for continuous case.)
For exponential families,

Without the sum “
∑

z ”, things simplify.
The log and the exp cancel out.

Assumption for the EM algorithm:
Optimization for complete data is relatively easy

argmax
θ∈Θ

logp(x ,z | θ)

(We’ll actually need slightly more than this.)
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EM Algorithm for Latent Variable Models

The EM Algorithm Key Idea

Marginal log likelihood is hard to optimize:

max
θ

log

{∑
z

p(x ,z | θ)

}

Full log-likelihood would be easy to optimize:

max
θ

logp(x ,z | θ)

What if we had a distribution q(z) for the latent variables Z?
e.g. q(z) = p(z | x ,θ)

Could maximize the expected complete data log-likelihood:

max
θ

∑
z

q(z) logp(x ,z | θ)
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EM Algorithm for Latent Variable Models

A Lower Bound for Marginal Likelihood

Let q(z) be any PMF on Z, the support of Z :

logp(x | θ) = log
∑
z

p(x ,z | θ)

= log
∑
z

q(z)

[
p(x ,z | θ)

q(z)

]
>
∑
z

q(z) log
(
p(x ,z | θ)

q(z)

)
=: L(q,θ).

The inequality is by Jensen’s, by concavity of the log.
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EM Algorithm for Latent Variable Models

Lower Bound and Expected Complete Log-Likelihood

Consider maximizing the lower bound L(q,θ):

L(q,θ) =
∑
z

q(z) log
(
p(x ,z | θ)

q(z)

)
=
∑
z

q(z) logp(x ,z | θ)︸ ︷︷ ︸
E[complete log-likelihood]

−
∑
z

q(z) logq(z)︸ ︷︷ ︸
no θ here

Maximizing L(q,θ) equivalent to maximizing
E [complete data log-likelihood].

David Rosenberg (New York University) DS-GA 1003 June 15, 2015 12 / 29



EM Algorithm for Latent Variable Models

A Family of Lower Bounds

Each q gives a different lower bound: logp(x | θ)> L(q,θ)

Two lower bounds, as functions of θ:

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM Algorithm for Latent Variable Models

EM: Coordinate Ascent on Lower Bound

In EM algorithm, we maximize the lower bound L(q,θ):

logp(x | θ)> L(q,θ).

EM Algorithm (high level):
1 Choose initial θold.
2 Let q∗ = argmaxqL(q,θold)
3 Let θnew = argmaxθL(q∗,θ).
4 Go to step 2, until converged.

Will show: p(x | θnew)> p(x | θold)

Get sequence of θ’s with monotonically increasing likelihood.
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EM Algorithm for Latent Variable Models

EM: Coordinate Ascent on Lower Bound

1 Start at θold. Find best lower bound at θold: L(q,θ).
2 θnew = argmaxθL(q,θ).

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM Algorithm for Latent Variable Models

The Lower Bound

Let’s investigate the lower bound:

L(q,θ) =
∑
z

q(z) log
(
p(x ,z | θ)

q(z)

)
=
∑
z

q(z) log
(
p(z | x ,θ)p(x | θ)

q(z)

)
=
∑
z

q(z) log
(
p(z | x ,θ)

q(z)

)
+
∑
z

q(z) logp(x | θ)

= −KL[q(z),p(z | x ,θ)]+ logp(x | θ)

Amazing! We get back an equality for the marginal likelihood:

logp(x | θ) = L(q,θ)+KL[q(z),p(z | x ,θ)]
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EM Algorithm for Latent Variable Models

The Best Lower Bound

Find q maximizing

L(q,θold) = −KL[q(z),p(z | x ,θold)]+ logp(x | θold)︸ ︷︷ ︸
no q here

?

Recall KL(p‖q)> 0, and KL(p‖p) = 0.
Best q is q∗(z) = p(z | x ,θold):

L(q∗,θold) = −KL[p(z | x ,θold),p(z | x ,θold)]︸ ︷︷ ︸
=0

+ logp(x | θold)

Summary:

logp(x | θold) = L(q∗,θold) (tangent at θold).
logp(x | θ) > L(q∗,θ) ∀θ
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EM Algorithm for Latent Variable Models

General EM Algorithm

1 Choose initial θold.
2 Expectation Step

Let q∗(z) = p(z | x ,θold).
Let

J(θ) = L(q∗,θ) =
∑
z

q∗(z) log
(
p(x ,z | θ)

q∗(z)

)
Note that J(θ) is an expectation w.r.t. Z ∼ q∗(z).

3 Maximization Step

θnew = argmax
θ

J(θ).

4 Go to step 2, until converged.
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EM Monotonically Increases Likelihood

EM Gives Monotonically Increasing Likelihood: By Picture

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM Monotonically Increases Likelihood

EM Gives Monotonically Increasing Likelihood: By Math

1 Start at θold.
2 Choose q∗(z) = argmaxqL(q,θold). We’ve shown

logp(x | θold) = L(q∗,θold)

3 Choose θnew = argmaxθL(q∗,θold). So

L(q∗,θnew) > L(q∗,θold).

Putting it together, we get

logp(x | θnew) > L(q∗,θnew) L is a lower bound
> L(q∗,θold) By definition of θnew

= logp(x | θold) Bound is tight at θold.

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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EM Monotonically Increases Likelihood

EM Gives Monotonically Increasing Likelihood: And so?

Let θn be value of EM algorithm after n steps.
Are there conditions for which

θn converges to the maximum likelihood?
θn converges to a local maximum?
θn converges to a stationary point of likelihood?
θn converges?

There are conditions for each of these (to happen and not to happen).
See “On the Convergence Properties of the EM Algorithm” by C. F.
Jeff Wu, The Annals of Statistics, Mar. 1983.

http://web.stanford.edu/class/ee378b/papers/wu-em.pdf

In practice, can run EM multiple times with random starts.
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The Gaussian Mixture Model

Homework: Derive EM for GMM from General EM
Algorithm

Subsequent slides may help set things up.
Key skills:

MLE for multivariate Gaussian distributions.
Lagrange multipliers
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The Gaussian Mixture Model

Gaussian Mixture Model (k = 3)

1 Choose Z ∈ {1,2,3} ∼Multi
(1
3 ,

1
3 ,

1
3

)
.

2 Choose X | Z = z ∼ N (X | µz ,Σz).
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The Gaussian Mixture Model

Gaussian Mixture Model (k Components)

GMM Parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

Let θ= (π,µ,Σ).

Marginal log-likelihood

logp(x | θ) = log

{
k∑

z=1

πzN (x | µz ,Σz)

}
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The Gaussian Mixture Model

q∗(z) = Soft Assignments

At each step, we take

q∗(z) = p(z | x ,θold)

.
This corresponds to “soft assignments” we had last time:

γ
j
i = P(Z = j | X = xi )

=
πjN (xi | µj ,Σj)∑k

c=1πcN (xi | µc ,Σc)
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The Gaussian Mixture Model

Expectation Step

The complete log-likelihood is

logp(x ,z | θ) =

n∑
i=1

log [πzN (xi | µz ,Σz)]

=

n∑
i=1

logπz + logN (xi | µz ,Σz)︸ ︷︷ ︸
simplifies nicely


Take the expected complete log-likelihood w.r.t. q∗:

J(θ) =
∑
z

q∗(z) logp(x ,z | θ)

=

n∑
i=1

k∑
j=1

γ
j
i [logπj + logN (xi | µj ,Σj)]

David Rosenberg (New York University) DS-GA 1003 June 15, 2015 26 / 29



The Gaussian Mixture Model

Maximization Step

Find θ∗ maximizing J(θ). Result is what we had last time:

µnew
c =

1
nc

n∑
i=1

γc
i xi

Σnew
c =

1
nc

n∑
i=1

γc
i (xi −µMLE)(xi −µMLE)

T

πnewc =
nc
n
,

for each c = 1, . . . ,k .
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Recommendations for Further Study

Machine Learning

1 Look at other course notes at this level.

Every course covers different subset of topics.
Different perspectives. (e.g. Bayesian / Probabilistic)

2 Read on some “second semester” topics

LDA / Topic Models (DS-GA 1005?)
Sequence models: Hidden Markov Models / MEMMs / CRFs (DS-GA
1005)
Bayesian methods
Collaborative Filtering / Recommendations
Ranking
Bandit problems (Thompson sampling / UCB methods)
Gaussian processes
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Recommendations for Further Study

Other Stuff to Learn

Statistics
Data Structures & Algorithms (Theoretical)
Some production programming language (e.g. Java, C++)
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