Machine Learning and Computational Statistics (DS-GA 1003)

David Rosenberg

New York University

January 28, 2015
Logistics

- Class webpage: https://davidrosenberg.github.io/ml2015
 - Syllabus on the website
- Piazza: https://piazza.com/nyu/spring2015/dsga1003
 - Ask questions here
- Required Lab Session
 - Thursdays: 6:10pm - 7pm (WWH 109)
 - **First session**: Guest lecture on differentiating w.r.t matrices and vectors
 - Lab instructor: TBD
Lab Sessions

- Supplemental Topics
- Mathematical topics (e.g. subgradients, matrix derivatives, SVD)
- Demonstrations or examples related to lecture
- Answer common questions from Piazza
- Midterm review
- Meeting with project advisors
Evaluation

- About 8 to 10 homeworks (60%)
- Midterm Exam (20%)
 - In 10th week of class, after spring break
- Project (20%)
- Extra Credit Opportunities
 - Up to (2%) for answering questions on Piazza
 - Optional problems or competitions on the homework
Homework (60%)

- First assignment out tonight – Due in one week.
- Submit with NYU Classes: https://newclasses.nyu.edu
- Late homework: Accepted up to 48 hours late with 20% penalty
- Collaboration is fine, but
 - Write up solutions and code on your own
 - List names of who you talked to about each problem
- Graders:
 - Hao Xu, Ran Bi, Prasoon Goyal
Midterm (20%)

- Late midterm: 10th week of term (April 8th)
- In class – during lecture
Projects (20%)

- Find some new data or new approach to old data
- Project philosophy the same as in these courses:
 - http://cs.nyu.edu/~dsontag/courses/ml14/assignments/projects.html
 - http://web.stanford.edu/class/cs221/project.html
- Logistics:
 - 2 students per group
 - First meeting with advisors **March 12th**
 - Project proposal due after Spring Break: **March 26th**
- Advisers:
 - Kurt Miller, Gideon Mann, plus one or two more TBD
Prerequisites

- Introduction to Data Science (DS-GA 1001)
- Math
 - Multivariate Calculus
 - Linear Algebra
 - Probability Theory
 - Statistics
- Python programming (numpy)
General Philosophy

- Mastery vs Performance
 - (understanding vs "getting the grade")
- Don’t confuse “kind of understanding” with “actual understanding”
- Can you explain this picture?
Course Topics

- **Frequentist Approaches**
 - ERM, regularization, SVM, kernels, ensemble methods, neural networks

- **Probabilistic Models**
 - GLM, Bayesian networks, Gaussian mixture models, EM algorithm, HMM

- **Bayesian Approaches**
 - priors/posteriors, hierarchical models, sampling methods, Bayesian model selection

- **Misc. and Advanced Topics**
 - dimensionality reduction, structured prediction
Questions?

- What are you looking to get out of the course?
- Questions for me?