Introduction to Statistical Learning Theory

David Rosenberg

New York University

January 29, 2015

What types of problems are we solving?

- In data science problems, we generally need to:
 - Make a decision
 - Take an action
 - Produce some output
- Have some evaluation criterion

Actions

Definition

An action is the generic term for what is produced by our system.

Examples of Actions

- Produce a 0/1 classification [classical ML]
- Reject hypothesis that $\theta = 0$ [classical Statistics]
- Written English text [speech recognition]
- Probability that a picture contains an animal [computer vision]
- Probability distribution on the earth [storm tracking]
- Adjust accelerator pedal down by 1 centimeter [automated driving]

Evaluation Criterion

Decision theory is about finding "optimal" actions, under various definitions of optimality.

Examples of Evaluation Criteria

- Is classification correct?
- Does text transcription exactly match the spoken words?
 - Should we give partial credit? How?
- Is probability "well-calibrated"?

Real Life: Formalizing a Business Problem

- First two steps to formalizing a problem:
 - Define the *action space* (i.e. the set of possible actions)
 - 2 Specify the evaluation criterion.
- Finding the right formalization can be an interesting challenge
- Formalization may evolve gradually, as you understand the problem better

Inputs

Most problems have an extra piece, going by various names:

- Inputs [ML]
- Covariates [Statistics]
- Side Information [Various settings]

Examples of Inputs

- A picture
- A storm's historical location and other weather data
- A search query

Output / Outcomes

Inputs often paired with outputs or outcomes

Examples of outputs / outcomes

- Whether or not the picture actually contains an animal
- The storm's location one hour after query
- Which, if any, of suggested the URLs were selected

Typical Sequence of Events

Many problem domains can be formalized as follows:

- Observe input *x*.
- 2 Take action a.
- Observe outcome y.
- **④** Evaluate action in relation to the outcome: $\ell(a, y)$.

Note

- Outcome y is often independent of action a
- But this is not always the case:
 - URL recommendation
 - automated driving

Some Formalization

The Spaces

• \mathfrak{X} : input space • \mathfrak{Y} : output space • \mathcal{A} : action space

Decision Function

A decision function produces an action $a \in A$ for any input $x \in \mathcal{X}$:

$$f: \mathfrak{X} \to \mathcal{A} \ x \mapsto f(x)$$

Loss Function

A loss function evaluates an action in the context of the output y.

$$\ell: \mathcal{A} \times \mathcal{Y} \to \mathbb{R}^{\geqslant 0}$$

 $(a, y) \mapsto \ell(a, y)$

Real Life: Formalizing a Business Problem

- First two steps to formalizing a problem:
 - **1** Define the *action space* (i.e. the set of possible actions)
 - 2 Specify the evaluation criterion.
- When a "stakeholder" asks the data scientist to solve a problem, she
 - may have an opinion on what the action space should be, and
 - hopefully has an opinion on the evaluation criterion, but
 - she really cares about your producing a "good" decision function.
- Typical sequence:
 - Stakeholder presents problem to data scientist
 - 2 Data scientist produces decision function
 - 3 Engineer deploys "industrial strength" version of decision function

Evaluating a Decision Function

- Loss function ℓ evaluates a single action
- How to evaluate the decision function as a whole?
- We will use the standard statistical learning theory framework.

Setup for Statistical Learning Theory

Data Generating Assumption

All pairs $(X, Y) \in \mathfrak{X} \times \mathfrak{Y}$ are drawn i.i.d. from some **unknown** $P_{\mathfrak{X} \times \mathfrak{Y}}$.

The Risk Functional

Definition

The **expected loss** or "**risk**" of a decision function $f : \mathcal{X} \to \mathcal{A}$ is

 $R(f) = \mathbb{E}\ell(f(X), Y),$

where the expectation taken is over $(X, Y) \sim P_{\mathfrak{X} \times \mathfrak{Y}}$.

Risk function cannot be computed

Since we don't know $P_{\mathfrak{X} \times \mathfrak{Y}}$, we cannot compute the expectation. But we can estimate it...

The Bayes Decision Function

Definition

A Bayes decision function $f^* : \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$R(f^*) = \inf_f R(f),$$

where the infimum is taken over all measurable functions from \mathcal{X} to \mathcal{A} . The risk of a Bayes decision function is called the **Bayes risk**.

• A Bayes decision function is often called the "target function", since it's what we would ultimately like to produce as our decision function.

Example 1: Least Squares Regression

- spaces: $\mathcal{A} = \mathcal{Y} = \mathbf{R}$
- square loss:

$$\ell(a,y) = \frac{1}{2}(a-y)^2$$

• mean square risk:

$$R(f) = \frac{1}{2} \mathbb{E} \left[(f(X) - Y)^2 \right]$$

= $\frac{1}{2} \mathbb{E} \left[(f(X) - \mathbb{E}[Y|X])^2 \right] + \frac{1}{2} \mathbb{E} \left[(Y - \mathbb{E}[Y|X])^2 \right]$

• target function:

$$f^*(x) = \mathbb{E}[Y|X = x]$$

Example 2: Multiclass Classification

• 0-1 loss:

$$\ell(a, y) = 1(a \neq y)$$

• risk is misclassification error rate

$$R(f) = \mathbb{E}[1(f(X) \neq Y)]$$
$$= \mathbb{P}(f(X) \neq Y)$$

• target function is the assignment to the most likely class

$$f^*(x) = \underset{1 \leq k \leq K}{\arg \max} \mathbb{P}(Y = k \mid X = x)$$

But we can't compute the risk!

- Can't compute $R(f) = \mathbb{E}\ell(f(X), Y)$ because we **don't know** $P_{\mathcal{X}\times\mathcal{Y}}$.
- Can we estimate $P_{X \times Y}$ from data?
- Under assumptions (e.g. comes from a parametric family), yes.
 - We'll come back to these approaches later in the course.
- Otherwise, we'll typically face a curse of dimensionality,
 - making $P_{\mathfrak{X} \times \mathfrak{Y}}$ very difficult ot estimate

A Curse of Dimensionality

The "volume" of space grows exponentially with the dimension.

Histograms

- Construct histogram for $X \in [0, 1]$ with bins of size 0.1
 - That's 10 bins.
 - About 100 observations would be a good start for estimation.
- Constuct histogram for $X \in [0,1]^{10}$ with hypercube bins of side length 0.1
 - That's $10^{10} = 10$ billion bins.
 - About 100 billion observations would be a good start for estimation...

Takeaway Message

To estimate a density in high dimensions, you need additional assumptions.

The Empirical Risk Functional

Can we estimate R(f) without estimating $\mathcal{P}_{\mathfrak{X}\times\mathfrak{Y}}$?

Assume we have sample data

Let $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f : \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

1

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i).$$

By the Strong Law of Large Numbers,

$$\lim_{n\to\infty}\hat{R}_n(f)=R(f),$$

almost surely.

That's a start...

David Rosenberg (New York University)

We want risk minimizer, is empirical risk minimizer close enough? Definition

A function \hat{f} is an empirical risk minimizer if

$$\hat{R}_n(\hat{f}) = \inf_f \hat{R}_n(f),$$

where the minimum is taken over all [measurable] functions.

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1 \text{ (i.e. } Y \text{ is always } 1\text{)}.$

 $\mathcal{P}_{\chi \times y}$.

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1$ (i.e. Y is always 1).

A sample of size 3 from $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}$.

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], \ Y \equiv 1$ (i.e. Y is always 1).

Under square loss or 0/1 loss: Empirical Risk = 0. Risk = 1.

- ERM led to a function *f* that just memorized the data.
- How to spread information or "generalize" from training inputs to new inputs?
 - Need to smooth things out somehow...
 - A lot of modeling is about spreading and extrapolating information from one part of the input space \mathcal{X} into unobserved parts of the space.

Aside: Notation for Function Spaces

Notation

Let $\mathcal{C}^{\mathcal{D}}$ denote the set of all functions mapping from \mathcal{D} [the domain] to \mathcal{C} [the codomain].

Hypothesis Spaces

Definition

A hypothesis space $\mathcal{F} \subset \mathcal{A}^{\mathcal{X}}$ is a set of decision functions we are considering as solutions.

Hypothesis Space Choice

- Easy to work with.
- Includes only those functions that have desired "smoothness"

Constrained Empirical Risk Minimization

- Hypothesis space $\mathfrak{F}\subset \mathcal{A}^{\mathfrak{X}},$ a set of functions mapping $\mathfrak{X}\to \mathcal{A}$
- Empirical risk minimizer (ERM) in \mathcal{F} is $\hat{f} \in \mathcal{F}$, where

$$\hat{R}(\hat{f}) = \inf_{f \in \mathcal{F}} \hat{R}(f) = \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).$$

• Risk minimizer in ${\mathfrak F}$ is $f_{{\mathfrak F}}^* \in {\mathfrak F}$, where

$$R(f_{\mathcal{F}}^*) = \inf_{f \in \mathcal{F}} R(f) = \inf_{f \in \mathcal{F}} \mathbb{E}\ell(f(X), Y)$$

Error Decomposition

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Error Decomposition

Definition

The excess risk of f is the amount by which the risk of f exceeds the Bayes risk

Excess
$$\operatorname{Risk}(\hat{f}_n) = R(\hat{f}_n) - R(f^*) = \underbrace{R(\hat{f}_n) - R(f^*_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f^*_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}.$$

This is a more general expression of the bias/variance tradeoff for mean squared error:

- Approximation error = "bias"
- Estimation error = "variance"

Approximation Error

- Approximation error is a property of the class ${\mathfrak F}$
- $\bullet\,$ It's our penalty for restricting to ${\mathcal F}$ rather than considering all measurable functions
 - Approximation error is the minimum risk possible with $\ensuremath{\mathfrak{F}}$ (even with infinite training data)
- Bigger \mathcal{F} mean smaller approximation error.

Estimation Error

- *Estimation error*: The performance hit for choosing *f* using finite training data
 - *Equivalently*: It's the hit for not knowing the true risk, but only the empirical risk.
- Smaller \mathcal{F} means smaller estimation error.
- Under typical conditions: 'With infinite training data, estimation error goes to zero.''
 - Infinite training data solves the *statistical* problem, which is not knowing the true risk.]

Optimization Error

- Does unlimited data solve our problems?
- There's still the *algorithmic* problem of *finding* $\hat{f}_n \in \mathcal{F}$.
- For nice choices of loss functions and classes \mathcal{F} , the algorithmic problem can be solved (to any desired accuracy).
 - Takes time! Is it worth it?
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then the optimization error is $R(\tilde{f}_n) R(\hat{f}_n)$
- NOTE: May have $R(\tilde{f}_n) < R(\hat{f}_n)$, since \hat{f}_n may overfit more than $\tilde{f}_n!$

ERM Overview

- Given a loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbf{R}^{\geq 0}$.
- Choose hypothesis space \mathcal{F} .
- Use an algorithm (an optimization method) to find $\hat{f}_n \in \mathcal{F}$ minimizing the empirical risk:

$$\min_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n\ell(f(X_i),Y_i).$$

• (So,
$$\hat{R}(\hat{f}) = \min_{f \in \mathcal{F}} \hat{R}(f)$$
).

• Data scientist's job: choose \mathcal{F} to optimally balance between approximation and estimation error.