Gradient and Stochastic Gradient Descent

David S. Rosenberg

January 29, 2015

Linear Least Squares Regression

Setup

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Output space $\mathcal{Y} = \mathbf{R}$
- Action space y = R
- Loss: $\ell(\hat{y}, y) = \frac{1}{2} (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y} \mid f(x) = w^T x\}$
- Given data set $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\},\$
 - Let's find the ERM $\hat{f} \in \mathcal{F}$.

Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2,$$

where $w \in \mathbb{R}^d$ parameterizes the hypothesis space \mathcal{F} .

Unconstrained Optimization

Setting

Objective function $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable. Want to find

$$x^* = \arg\min_{x \in \mathbf{R}^d} f(x)$$

The Gradient

Definition

The gradient $\nabla_x f(x_0)$ of a differentiable function f(x) at the point x_0 is the direction to move in for the fastest increase in f(x), when starting from x_0 .

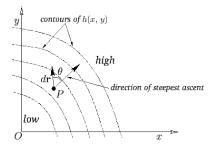


Figure: Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Gradient Descent

Gradient Descent

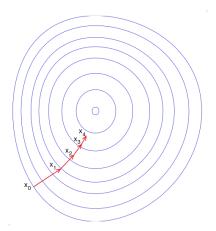
- Initialize x = 0
- repeat

•
$$x \leftarrow x - \underbrace{\eta}_{\text{step size}} \nabla f(x)$$

• until stopping criterion satisfied

Gradient Descent Path

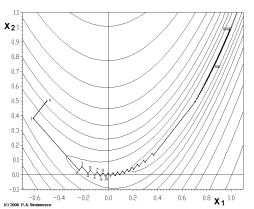
Gradient Descent for a nice (convex) function



7 / 18

Gradient Descent Path

Gradient Descent Path for the Rosenbrock Function (not convex)



(Figure by P.A. Simionescu from Wikipedia page on gradient descent)

 David S. Rosenberg
 ML1003
 January 29, 2015
 8 / 18

Gradient Descent - Details

Step Size

- Empirically $\eta = 0.1$ often works well
- Better: Optimize at every step (e.g. backtracking line search)

Stopping Rule

- Could use a maximum number of steps (e.g. 100)
- Wait until $\|\nabla f(x)\| \leq \varepsilon$.
- Test performance on holdout data (in learning setting)

Gradient Descent for Linear Regression

Gradient of Objective Function:

The gradient of the objective is

$$\nabla_{w} \hat{R}_{n}(w) = \nabla_{w} \left[\frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} \right]$$
$$= \frac{2}{n} \sum_{i=1}^{n} \underbrace{(w^{T} x_{i} - y_{i})}_{i \text{th residual}} x_{i}$$

Gradient Descent: Does it scale?

• At every iteration, we compute the gradient at current w:

$$\nabla_{w} \hat{R}_{n}(w) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(w^{T} x_{i} - y_{i}\right)}_{i \text{th residual}} x_{i}$$

- We have to touch all n training points to take a single step. [O(n)]
 - Called a batch optimization method
- Can we make progress without looking at all the data?

Gradient Descent on the Risk

• Real goal is to minimize the risk (expected loss):

$$\underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\left[\ell(f(X), Y)\right]$$

• For linear regression, that's

$$\arg\min_{w} \mathbb{E}\left(w^{T}X - Y\right)^{2}$$

• Gradient descent on this?

$$\nabla_{w} \mathbb{E} (w^{T} X - Y)^{2} = \mathbb{E} [2 (w^{T} X - Y) X]$$

Gradient Descent on the Risk [approximately]

• Want to find gradient of the risk:

$$\nabla R(w) = \mathbb{E}\left[2\left(w^T X - Y\right)X\right]$$

• Can estimate expectation with a sample:

$$\widehat{\nabla R(w)} = \frac{1}{n} \sum_{i=1}^{n} \left[2 \left(\underbrace{w^{T} x_{i} - y_{i}}_{\text{i'th residual}} \right) x_{i} \right]$$

• Let's return to the general case...

Gradient Descent on the Risk: General Case

Gradient of Risk:

- Say hypothesis space \mathcal{F} is parameterized by $w \in \mathbf{R}^d$.
- ullet Switching $abla_w$ and $\mathbb E$ we can write the gradient of risk as

$$\mathsf{Gradient}\big(\mathsf{Risk}\big) = \nabla_{w}\mathbb{E}\left[\ell(f(X),Y)\right] = \mathbb{E}\left[\nabla_{w}\ell(f(X),Y)\right]$$

Unbiased estimator for Gradient(Risk):

$$\frac{1}{n} \sum_{i=1}^{n} \left[\nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right] \approx \underbrace{\mathbb{E}\left[\nabla_{w} \ell(f(X), Y) \right]}_{\text{Gradient(Risk)}}$$

Gradient Descent on the Risk: General Case

- We want Gradient(Risk)
- Estimate it using sample of size n
- Bigger $n \Longrightarrow$ Better estimate
- Bigger $n \Longrightarrow \text{Touching more data (slower!)}$
- But how big an *n* do we need?

Gradient Descent on the Risk [approximately]

- Gradient descent takes a bunch of steps whether we use
 - the perfect step direction $\nabla R(w)$,
 - an empirical estimate using all training data $\nabla \hat{R}_n(w)$, or
 - ullet an empirical estimate using a random subset of data $abla \hat{R}_N(w)$ $(N \ll n)$
- What about N=1?
- Even with a sample of size 1, the estimate

$$\nabla_w \ell(f_w(x_i), y_i)$$

is still unbiased for gradient(Risk).

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize w = 0
- repeat
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$
 - $w \leftarrow w \eta$ $\nabla_{w} \ell(f_{w}(x_{i}), y_{i})$ Grad(Loss on i'th example)
- until stopping criteria met

SGD: Step Size

- Let η_t be the step size at the t'th step.
- How should η_t 's decrease with each step?

Robbins-Monroe Conditions

Many classical convergence results depend on the following two conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty \qquad \sum_{t=1}^{\infty} \eta_t = \infty$$

- As fast as $\eta_t = O\left(\frac{1}{t}\right)$ would satisfy this... but should be faster than $O\left(\frac{1}{\sqrt{t}}\right)$.
- A useful reference for practical techniques: Leon Bottou's "Tricks": http:

//research.microsoft.com/pubs/192769/tricks-2012.pdf