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Convex and differentiable functions

Convex Sets

Definition
A set C is convex if the line segment between any two points in C lies in
C .

KPM Fig. 7.4
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Convex and differentiable functions

Convex and Concave Functions

Definition
A function f : Rn→ R is convex if the line segment connecting any two
points on the graph of f lies above the graph. f is concave if −f is convex.
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Convex and differentiable functions

First-Order Approximation

Suppose f : Rn→ R is differentiable
Suppose we know f (x) and ∇f (x).
What can we say about f (y), when y is near x?
We have the following linear approximation:

f (y)≈ f (x)+∇f (x)T (y − x)

Boyd & Vandenberghe Fig. 3.2
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

Suppose f : Rn→ R is convex and differentiable
Then for any x ,y ∈ Rn

f (y)> f (x)+∇f (x)T (y − x)

The linear approximation to f at x is a global underestimator of f :

Boyd & Vandenberghe Fig. 3.2

David Rosenberg (New York University) DS-GA 1003 February 5, 2015 5 / 17



Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

Suppose f : Rn→ R is convex and differentiable
Then for any x ,y ∈ Rn

f (y)> f (x)+∇f (x)T (y − x)

Corollary

If ∇f (x) = 0 then x is a global minimizer of f .
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Subgradients

Subgradients

Definition
A vector g ∈ Rn is a subgradient of f : Rn→ R at x if for all z ,

f (z)> f (x)+gT (z− x).

g is a subgradient iff f (x)+gT (z− x) is a global underestimator of f
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Subgradients

Subdifferential

Definitions
f is subdifferentiable at x if ∃ at least one subgradient at x .
The set of all subgradients at x is called the subdifferential: ∂f (x)

Basic Facts

If f is convex and differentiable, then ∇f (x) is the unique subgradient
of f at x .
Any point x , there can be 0, 1, or infinitely many subgradients.

Can only be 0 for non-convex f .
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Subgradients

Globla Optimality Condition

Definition
A vector g ∈ Rn is a subgradient of f : Rn→ R at x if for all z ,

f (z)> f (x)+gT (z− x).

Corollary

If 0 ∈ ∂f (x), then x is a global minimizer of f .
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Subgradients

Subdifferential of Absolute Value

Consider f (x) = |x |

Plot on right shows ∪ {(x ,g) | x ∈ R,g ∈ ∂f (x)}
See B&V’s notes for more: http://web.stanford.edu/class/
ee364b/lectures/subgradients_notes.pdf

Boyd EE364b: Subgradients Slides
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Subgradient Descent

Subgradient Descent

Subgradient Descent
Initialize x = 0

repeat

x ← x −ηg for g ∈ ∂f (x) and η chosen according to step size rule

until stopping criterion satisfied

Note: Not necessarily a “descent method”
in a descent method, every step is an improvement

Always keep track of the best x we’ve seen as we go
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Subgradient Descent

Step Size

Because not a descent method, can’t adaptive step size

i.e. we don’t use backtracking line search.

Need to determine step sizes in advance
Two main choices:

1 Fixed step size
2 Step sizes decrease according to Robbins-Monro Conditions:

∞∑
t=1

η2
t <∞ ∞∑

t=1

ηt =∞
e.g. ηt = 1/t.
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Subgradient Descent

Convergence Theorem for Fixed Step Size

Assume f : Rn→ R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For fixed step size η, subgradient method satisfies:

lim
k→∞ f (x

(k)
best)6 f (x∗)+G 2t/2

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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Subgradient Descent

Convergence Theorems for Decreasing Step Sizes

Assume f : Rn→ R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For step size respecting Robbins-Monro conditions,

lim
k→∞ f (x

(k)
best)6 f (x∗)

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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Example: Lasso

Coordinate Subdifferential of Lasso Objective

Lasso objective:

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Partial derivative of empirical risk (homework):

∂

∂wk

n∑
i=1

(
wT xi − yi

)2
= akwk − ck

where

aj = 2
n∑

i=1

x2
ij cj = 2

n∑
i=1

xij(yi −wT
−jxi ,−j)
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Example: Lasso

Coordinate Subdifferential of Lasso Objective

Subdifferential of |w |1:

∂wk
λ |w |=


−λ wk < 0
λ wk > 0
[−λ,λ] wk = 0

So subdifferential of objective is:

∂wk
(Lasso Objective)=


akwk − ck −λ wk < 0
akwk − ck +λ wk > 0
[−ck −λ,−ck +λ] wk = 0
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Example: Lasso

Coordinate Subdifferential of Lasso Objective

Solving for 0 ∈ ∂wk
(Lasso Objective):

Case 1: wk < 0:

akwk − ck −λ= 0 =⇒ wk = (ck +λ)/ak

So if ck <−λ, then wk = (ck +λ)/ak is a critical point
Case 2: wk > 0: If ck > λ then wk = (ck −λ)/ak is a critical point
Case 3: wk = 0: wk = 0 and ck ∈ [−λ,λ] =⇒ 0 ∈ [−ck −λ,−ck +λ]
so wk = 0 is a critical point

So 0 ∈ ∂wk
(Lasso Objective) iff

wj(cj) =


(cj +λ)/aj if cj <−λ

0 if cj ∈ [−λ,λ]

(cj −λ)/aj if cj > λ
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