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Convex and differentiable functions

Convex Sets

Definition

A set C is convex if the line segment between any two points in C lies in
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Convex and differentiable functions

Convex and Concave Functions

Definition
A function f : R" — R is convex if the line segment connecting any two
points on the graph of f lies above the graph. f is concave if —f is convex.

KPM Fig. 7.5
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First-Order Approximation

@ Suppose f :R" — R is differentiable

@ Suppose we know f(x) and Vf(x).

@ What can we say about f(y), when y is near x?
@ We have the following linear approximation:

fly) = f(x)+VF(x)(y—x)

() /

(z, f(=))

fl@)+ Vi) (y-2)

Boyd & Vandenberghe Fig. 3.2
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

@ Suppose f : R” — R is convex and differentiable

@ Then for any x,y € R”
fly) = f(x)+VF(x)T (y—x)
@ The linear approximation to f at x is a global underestimator of f:

()
f(@)+ Vi) (y—=)

(z, f(=))

Boyd & Vandenberghe Fig. 3.2
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

@ Suppose f:R" — R is convex and differentiable

@ Then for any x,y € R”

Fly) = f(x)+VF(x) (y—x)

Corollary
If Vf(x) =0 then x is a global minimizer of f. J
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Subgradients

Definition

A vector g € R" is a subgradient of f : R" — R at x if for all z,

flz) = f(x)+gT (z—x).

e g is a subgradient iff f(x)+g’(

A
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Subdifferential

Definitions
o f is subdifferentiable at x if 3 at least one subgradient at x.

@ The set of all subgradients at x is called the subdifferential: 0f(x)

Basic Facts J

e If f is convex and differentiable, then V(x) is the unique subgradient
of f at x.

@ Any point x, there can be 0, 1, or infinitely many subgradients.

o Can only be 0 for non-convex f.
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Globla Optimality Condition

Definition
A vector g € R" is a subgradient of f : R” — R at x if for all z,

flz) > f(x)+g" (z—x).

Corollary

If0 € 0f (x), then x is a global minimizer of f.
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Subdifferential of Absolute Value

o Consider f(x) = x|

fz) = |=| 8f(z)

@ Plot on right shows U{(x,g) | x € R, g € 0f (x)}

@ See B&V's notes for more: http://web.stanford.edu/class/
ee364b/lectures/subgradients_notes.pdf

Boyd EE364b: Subgradients Slides
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Subgradient Descent

Subgradient Descent
@ Initialize x=0
e repeat
o x <+ x—ng for g € 0f(x) and n chosen according to step size rule

e until stopping criterion satisfied

@ Note: Not necessarily a “descent method"
e in a descent method, every step is an improvement

@ Always keep track of the best x we've seen as we go
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Step Size

@ Because not a descent method, can't adaptive step size

e i.e. we don't use backtracking line search.

@ Need to determine step sizes in advance
@ Two main choices:

© Fixed step size
© Step sizes decrease according to Robbins-Monro Conditions:

00 0
Qni<eo ) me=oo
t=1 t=1

e eg Mny=1/t.
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Subgradient Descent

Convergence Theorem for Fixed Step Size
Assume f : R" — R is convex and
@ f is Lipschitz continuous with constant G > 0:

If(x)—=f(y)l < Gl x—yll forall x,y

Theorem

For fixed step size 1, subgradient method satisfies:

||m f(xbest) f(x*)+ G%t/2

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06- sg-method.pdf
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Subgradient Descent

Convergence Theorems for Decreasing Step Sizes
Assume f :R" — R is convex and
@ f is Lipschitz continuous with constant G > 0:

If(x)—=f(y)l < Gl x—yll forall x,y

Theorem

For step size respecting Robbins-Monro conditions,

||m f(xbest) f(x*)

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06- sg-method.pdf
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Coordinate Subdifferential of Lasso Objective

@ Lasso objective:

n

min, 3 (WP =) +Alwly

e Partial derivative of empirical risk (homework):

0 To N2 B
aWk;(W X,—y,) = Wk — Ck

where

n

L 2
aJ—ZE Xii CJ—QE xij(yi —w_ X,_J)

i=1
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Coordinate Subdifferential of Lasso Objective

@ Subdifferential of |w|:

—A wy <0
Ow Alw[= <A wg >0
[—)\, 7\] Wy = 0
@ So subdifferential of objective is:
Wk — Ck —A wi <0
Ow, (Lasso Objective) = ¢ apwy —cx + A wy >0

[—ck— A, —ck+Al we=0
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Coordinate Subdifferential of Lasso Objective

@ Solving for 0 € 9y, (Lasso Objective):

e Case 1: w, <O:
aw,—ck—A=0 = Wk:(ck—i—?\)/ak

So if ¢, < —A, then wy = (¢ +A) /ax is a critical point
o Case 2: wy >0: If ¢, > A then wy = (cx —A) /ak is a critical point
e Case 3: wy=0: wx=0and ¢cx € [-A\A] = 0€ [—cxk—A,—ck+A]
so wg =0 is a critical point

e So 0 €9y, (Lasso Objective) iff

if ¢; € [=AA]
A)/aj if g >A

(cg+A)/aj if g <—A
wj(c) =140
(¢—
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