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Hypothesis Spaces

@ We've spoken vaguely about “bigger’ and “smaller” hypothesis spaces

@ In practice, convenient to work with a nested sequence of spaces:
F1CHFHCTF,--CF
Decision Trees

o F ={all decision trees}

o F, ={all decision trees of depth < n}
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Tikhonov and Ivanov Regularization

Complexity Measures for Decision Functions

Number of variables / features
Depth of a decision tree

Degree of a polynomial

A measure of smoothness:
f J{f"(t)}z dt

@ How about for linear models?

o {y complexity: number of non-zero coefficients
o {1 “lasso” complexity: Zf‘l:llw,-l, for coefficients wy, ..., wy
o {5 "ridge” complexity: Z;jzl w? for coefficients wy, ..., wy
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Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F
Complexity measure Q : F — R=0

Consider all functions in & with complexity at most r:

Fr={feF|Q(f)<r}

e If O is a norm on &, this is a ball of radius r in F.

@ Increasing complexities: r =0,1.2,2.6,5.4,... gives nested spaces:

FoCFi120CTFrgCTFsgC---CTF
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Tikhonov and Ivanov Regularization

Constrained Empirical Risk Minimization

Constrained ERM (lvanov regularization)

For complexity measure Q : F — R>? and fixed r > 0,

n

i LF(x),y;
fr_rg;i:l (f(xi),yi)

st. Q(f) < r

@ Choose r using validation data or cross-validation.
@ Each r corresponds to a different hypothesis spaces. Could also write:

n

ffgg[lrzlf(f(xi),Yi)

1=
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Tikhonov and Ivanov Regularization

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)
For complexity measure Q : F — R>0 and fixed A > 0,

n

;neig 2 L(f(x;), yi) +AQ(f)

@ Choose A using validation data or cross-validation.

David Rosenberg (New York University)| DS-GA 1003 February 5, 2015

6/ 32



Tikhonov and Ivanov Regularization

lvanov vs Tikhonov Regularization

@ Let L:F — R be any performance measure of f
e e.g. L(f) could be the empirical risk of £
@ For many L and Q, Ivanov and Tikhonov are “equivalent”.
@ What does this mean?
e Any solution you could get from lvanov, can also get from Tikhonov.
e Any solution you could get from Tikhonov, can also get from Ivanov.
@ In practice, both approaches are effective.
@ Tikhonov often more convenient because it's an unconstrained

minimization.
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Tikhonov and Ivanov Regularization

lvanov vs Tikhonov Regularization

Ivanov and Tikhonov regularization are equivalent if:
@ For any choice of r > 0, the Ivanov solution

fr=argminL(f) s.t. Q(f)<r
fesF

is also a Tikhonov solution for some A > 0. That is, 3A > 0 such that

¥ =argmin L(f)+AQ(f).
feg

@ Conversely, for any choice of A > 0, the Tikhonov solution:

fx =argminL(f)+AQ(f)
feg

is also an Ivanov solution for some r > 0. That is, 3r > 0 such that

fx =argminL(f) st. Q(f)<r
fesF
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€3 and {> Regularization

Linear Least Squares Regression

Consider linear models

F={f:R=R|f(x)=w'x for we R’}

Loss: £(9,y) =3 (y—9)°
Training data D, ={(x1, y1),..., (Xn, ¥n)}

@ Linear least squares regression is ERM for { over J

n
w= argminZ {WTX,-—y,-}2

weR? g
@ Can overfit when d is large compared to n.
@ e.g.: d > nvery common in Natural Language Processing problems

(e.g. a 1M features for 10K documents).
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Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter A > 0 is

—argman{W Xj— y,} +A[wl3,
weR 1

where [|w||3 = w2 +---+ w3 is the square of the {,-norm.

Ridge Regression (lvanov Form)

The ridge regression solution for complexity parameter r >0 is

—argman{W Xi — y,

wlig<ri=1
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Ridge Regression: Regularization Path
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df(A=00) =0 df(A =0) = input dimension

Plot from Hastie et al.’'s ESL, 2nd edition, Fig. 3.8
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€1 and £ Regularization

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter A > 0 is

_argman{w Xj— y,} +A[wll1,

WERd i=1

where [|w||1 = |wi|+ -+ |wyl| is the £1-norm.

Lasso Regression (lvanov Form)

The lasso regression solution for complexity parameter r >0 is

—argman{W Xj— y,

lwlla<r ;=
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€1 and £ Regularization

Lasso Regression: Regularization Path
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Shrinkage Factor s

Shrinkage Factor s = r/|wl|;, where W is the ERM (the unpenalized fit).

Plot from Hastie et al.’s ESL, 2nd edition, Fig. 3.10
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Lasso Gives Feature Sparsity: So What?

Time/expense to compute/buy features
Memory to store features (e.g. real-time deployment)
Identifies the important features

Better prediction? sometimes

As a feature-selection step for training a slower non-linear model
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€1 and £ Regularization

lvanov and Tikhonov Equivalent?

@ For ridge regression and lasso regression,

e the lvanov and Tikhonov formulations are equivalent
o [We may prove this in homework assignment 3]

@ We will use whichever form is most convenient.
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The €1 and € Norm Constraints

o For visualization, restrict to 2-dimensional input space
o F={f(x) =wixi +waxz} (linear hypothesis space)
@ Represent F by {(Wl, wy) € R2}.

@ {, contour: @ {1 contour:
wi4ws=r lwa|+[wo| =r

Where are the “sparse” solutions?
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€1 and £ Regularization

The Famous Picture for £1 Regularization

o f*=argmin,crzY 11 (w'xi— y,) subject to|wy|+[ws| < r

o Red lines: contours of R,(w)=3 ", (wTx— y,) .

1
@ Blue region: Area satisfying complexity constraint: |wy|+|wa| < r

KPM Fig. 13.3

David Rosenberg (New York University)| DS-GA 1003 February 5, 2015 17 / 32




The Empirical Risk for Square Loss

@ Denote the empirical risk of f(x) =w"x by

Ralw) =Y (wxi—yi)* = IXw—yIP?
i=1

o R, is minimized by w = (XTX)leTy, the OLS solution.
e What does R, look like around w?
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The Empirical Risk for Square Loss

@ By completing the quadratic form®, we can show for any w € R¥:
Ro(w) = Rerm + (w— ) " XT X (w— W)

where Regrm = Ii’,,(v“v) is the optimal empirical risk.

o Set of w with R,(w) exceeding Rerm by ¢ >0 is
{ W Raw) =+ Rerna } = {wl (w— )T XTX (w—w) =c},

which is an ellipsoid centered at Ww.

IPlug into this easily verifiable identity
8T MO+2bT0=(0+M 1b)T MO+ M 1b)—b" M—1b. This actually proves the OLS
solution is optimal, without calculus.
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€3 and {> Regularization

The Famous Picture for £» Regularization

: 2 .
o f*=argmin,crzY 71 (w'xj—y;) subject to wf+wj <r

. A 2
@ Red lines: contours of Ry(w) =37, (w'xi—y)".
o Blue region: Area satisfying complexity constraint: w2 +w2 < r

KPM Fig. 13.3
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€1 and £ Regularization

How to find the Lasso solution?

@ How to solve the Lasso?
. 2
min (WTX,'—y,') +Awl,
weRI T

@ |wl; is not differentiable!
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Splitting a Number into Positive and Negative Parts

@ Consider any number a € R.
@ Let the positive part of a be
at =al(a>0).
o Let the negative part of a be
a =-al(a<D0).
@ Do you see why a* >0 and a— > 07
e So
a=a —a
e and
lal=a"+a .

David Rosenberg (New York University)| DS-GA 1003 February 5, 2015

22 / 32



€1 and £ Regularization

How to find the Lasso solution?

@ The Lasso problem

n
. 2
min (WTX,-—y,-) +Alwly
weRd 4
i=1
o Replace each w; by w;" —w; .
o Write wt = (waj) and w— = (Wl_,...,Wd_).
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€3 and {> Regularization

The Lasso as a Quadratic Program

+

@ Substituting w =w™ —w™ and |w|=w" +w™, Lasso problem is:

n

min Z

wt,w— ERdI

2
W_)TX,'—y,'> +A (W+ + W_)

I

subject to w™ >0 for all i
=0

0 for all i

Objective is differentiable (in fact, convex and quadratic)
2d variables vs d variables

2d constraints vs no constraints

A “quadratic program’: a convex quadratic objective with linear
constraints.

e Could plug this into a generic QP solver.
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Projected SGD

n

. \T 2 _
min —w xi—vyi)] FA(wr+w
W+,W_€Rd;< ) ' yl) ( )
subject to w;" >0 for all i

>0

w; >0 for all /

e Solution:

o Take a stochastic gradient step
o “Project” w' and w™ into the constraint set

o In other words, any component of w™ or w™ is negative, make it 0 .

o Note: Sparsity pattern may change frequently as we iterate
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Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize L(w) = L(wi,...wy) over w = (w1,...,wy) € RY.
e Initialize w(® =0
@ while not converged:

o Choose a coordinate j €{1,...,d}

anew <—argminwj L(Wl(t),...,vvj(i)l,wj,vvj(i)l,...,wcst))
o wlttl) ()

o W-(H_l) « ijne

o t+t+1

W

@ For when it's easier to minimize w.r.t. one coordinate at a time
@ Random coordinate choice == stochastic coordinate descent

@ Cyclic coordinate choice = cyclic coordinate descent
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€1 and £ Regularization

Coordinate Descent Method for Lasso

@ Why mention coordinate descent for Lasso?

o In Lasso, the coordinate minimization has a closed form solution!
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€1 and £ Regularization

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

n
Wi = argminZ (WTXi—Yi)2+)\|W|1

wWiER 1
Then
(i+A)/aj ifg<—A
Wi(cj)) =<0 if ¢ € [-AA]
(cj—7\)/aj if Cj>}\
aj:2Zx,-§ q=2ZXij(}/i—W—Tin,—j)
i=1 i=1

where w_; is w without component j and similarly for x; _;.
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€1 and £ Regularization

The Coordinate Minimizer for Lasso
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KPM Figure 13.5
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Coordinate Descent Method — Variation

@ Suppose there's no closed form? (e.g. logistic regression)
@ Do we really need to fully solve each inner minimization problem?
@ A single projected gradient step is enough for {; regularization!

o Shalev-Shwartz & Tewari's “Stochastic Methods...” (2011)
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€1 and £ Regularization

Stochastic Coordinate Descent for Lasso — Variation

o Let w=(wt,w)eR? and

L(w) = i ((W+—Wi)TX,'—y,'>2+7\(W++W7)

i=1

Stochastic Coordinate Descent for Lasso - Variation
Goal: Minimize L(W) s.t. w.",w;~ >0 for all i.
e Initialize w(©) =0
e while not converged:

o Randomly choose a coordinate j €11,..., 2d}
o W« Wj+max{—W;,—V;L(W)}
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€1 and £ Regularization

The ((Zq)q Norm Constraint

e Generalize to £ norm: (||wl|q)? =[wa|? +|wa| .
o F={f(x)=wixg +woxo}.
e Contours of ||w|d = |wi|? +|wo|?:

g=4 g=2 g=
| |

1 q
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