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Tikhonov and Ivanov Regularization

Hypothesis Spaces

We’ve spoken vaguely about “bigger” and “smaller” hypothesis spaces
In practice, convenient to work with a nested sequence of spaces:

F1 ⊂ F2 ⊂ Fn · · · ⊂ F

Decision Trees
F = {all decision trees}
Fn = {all decision trees of depth 6 n}
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Tikhonov and Ivanov Regularization

Complexity Measures for Decision Functions

Number of variables / features
Depth of a decision tree
Degree of a polynomial
A measure of smoothness:

f 7→
∫ {

f ′′(t)
}2

dt

How about for linear models?

`0 complexity: number of non-zero coefficients
`1 “lasso” complexity:

∑d
i=1 |wi |, for coefficients w1, . . . ,wd

`2 “ridge” complexity:
∑d

i=1w
2
i for coefficients w1, . . . ,wd
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Tikhonov and Ivanov Regularization

Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F
Complexity measure Ω : F→ R>0

Consider all functions in F with complexity at most r :

Fr = {f ∈ F |Ω(f )6 r }

If Ω is a norm on F, this is a ball of radius r in F.

Increasing complexities: r = 0,1.2,2.6,5.4, . . . gives nested spaces:

F0 ⊂ F1.2 ⊂ F2.6 ⊂ F5.4 ⊂ ·· · ⊂ F
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Tikhonov and Ivanov Regularization

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ R>0 and fixed r > 0,

min
f∈F

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Choose r using validation data or cross-validation.
Each r corresponds to a different hypothesis spaces. Could also write:

min
f∈Fr

n∑
i=1

`(f (xi ),yi )
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Tikhonov and Ivanov Regularization

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ R>0 and fixed λ> 0,

min
f∈F

n∑
i=1

`(f (xi ),yi )+λΩ(f )

Choose λ using validation data or cross-validation.
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Tikhonov and Ivanov Regularization

Ivanov vs Tikhonov Regularization

Let L : F→ R be any performance measure of f

e.g. L(f ) could be the empirical risk of f

For many L and Ω, Ivanov and Tikhonov are “equivalent”.
What does this mean?

Any solution you could get from Ivanov, can also get from Tikhonov.
Any solution you could get from Tikhonov, can also get from Ivanov.

In practice, both approaches are effective.
Tikhonov often more convenient because it’s an unconstrained
minimization.
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Tikhonov and Ivanov Regularization

Ivanov vs Tikhonov Regularization

Ivanov and Tikhonov regularization are equivalent if:
1 For any choice of r > 0, the Ivanov solution

f ∗r = argmin
f∈F

L(f ) s.t. Ω(f )6 r

is also a Tikhonov solution for some λ > 0. That is, ∃λ > 0 such that

f ∗r = argmin
f∈F

L(f )+λΩ(f ).

2 Conversely, for any choice of λ > 0, the Tikhonov solution:

f ∗λ = argmin
f∈F

L(f )+λΩ(f )

is also an Ivanov solution for some r > 0. That is, ∃r > 0 such that

f ∗λ = argmin
f∈F

L(f ) s.t. Ω(f )6 r

David Rosenberg (New York University) DS-GA 1003 February 5, 2015 8 / 32



`1 and `2 Regularization

Linear Least Squares Regression

Consider linear models

F =
{
f : Rd → R | f (x) = wT x for w ∈ Rd

}
Loss: `(ŷ ,y) = 1

2 (y − ŷ)2

Training data Dn = {(x1,y1), . . . ,(xn,yn)}

Linear least squares regression is ERM for ` over F:

ŵ = argmin
w∈Rd

n∑
i=1

{
wT xi − yi

}2

Can overfit when d is large compared to n.
e.g.: d � n very common in Natural Language Processing problems
(e.g. a 1M features for 10K documents).

David Rosenberg (New York University) DS-GA 1003 February 5, 2015 9 / 32



`1 and `2 Regularization

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖226r

n∑
i=1

{
wT xi − yi

}2
.
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`1 and `2 Regularization

Ridge Regression: Regularization Path

df(λ=∞) = 0 df(λ= 0) = input dimension

Plot from Hastie et al.’s ESL, 2nd edition, Fig. 3.8
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`1 and `2 Regularization

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

n∑
i=1

{
wT xi − yi

}2
.
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`1 and `2 Regularization

Lasso Regression: Regularization Path

Shrinkage Factor s = r/ |ŵ |1, where ŵ is the ERM (the unpenalized fit).

Plot from Hastie et al.’s ESL, 2nd edition, Fig. 3.10
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`1 and `2 Regularization

Lasso Gives Feature Sparsity: So What?

Time/expense to compute/buy features
Memory to store features (e.g. real-time deployment)
Identifies the important features
Better prediction? sometimes
As a feature-selection step for training a slower non-linear model
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`1 and `2 Regularization

Ivanov and Tikhonov Equivalent?

For ridge regression and lasso regression,

the Ivanov and Tikhonov formulations are equivalent
[We may prove this in homework assignment 3.]

We will use whichever form is most convenient.
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`1 and `2 Regularization

The `1 and `2 Norm Constraints

For visualization, restrict to 2-dimensional input space
F = {f (x) = w1x1+w2x2} (linear hypothesis space)
Represent F by

{
(w1,w2) ∈ R2

}
.

`2 contour:
w2

1 +w2
2 = r

`1 contour:
|w1|+ |w2|= r

Where are the “sparse” solutions?
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`1 and `2 Regularization

The Famous Picture for `1 Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to |w1|+ |w2|6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.
Blue region: Area satisfying complexity constraint: |w1|+ |w2|6 r

KPM Fig. 13.3
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`1 and `2 Regularization

The Empirical Risk for Square Loss

Denote the empirical risk of f (x) = wT x by

R̂n(w) =

n∑
i=1

(
wT xi − yi

)2
= ||Xw − y ||2

R̂n is minimized by ŵ =
(
XTX

)−1
XT y , the OLS solution.

What does R̂n look like around ŵ?
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`1 and `2 Regularization

The Empirical Risk for Square Loss

By completing the quadratic form1, we can show for any w ∈ Rd :

R̂n(w) = RERM+(w − ŵ)T XTX (w − ŵ)

where RERM = R̂n(ŵ) is the optimal empirical risk.
Set of w with R̂n(w) exceeding RERM by c > 0 is{

w | R̂n(w) = c+RERM

}
=
{
w | (w − ŵ)T XTX (w − ŵ) = c

}
,

which is an ellipsoid centered at ŵ .

1Plug into this easily verifiable identity
θTMθ+2bTθ= (θ+M−1b)TM(θ+M−1b)−bTM−1b. This actually proves the OLS
solution is optimal, without calculus.
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`1 and `2 Regularization

The Famous Picture for `2 Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to w2
1 +w2

2 6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.
Blue region: Area satisfying complexity constraint: w2

1 +w2
2 6 r

KPM Fig. 13.3
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`1 and `2 Regularization

How to find the Lasso solution?

How to solve the Lasso?

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

|w |1 is not differentiable!
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`1 and `2 Regularization

Splitting a Number into Positive and Negative Parts

Consider any number a ∈ R.
Let the positive part of a be

a+ = a1(a> 0).

Let the negative part of a be

a− =−a1(a6 0).

Do you see why a+ > 0 and a− > 0?
So

a = a+−a−

and
|a|= a++a−.
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`1 and `2 Regularization

How to find the Lasso solution?

The Lasso problem

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Replace each wi by w+
i −w−

i .
Write w+ =

(
w+

1 , . . . ,w+
d

)
and w− =

(
w−

1 , . . . ,w−
d

)
.
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`1 and `2 Regularization

The Lasso as a Quadratic Program

Substituting w = w+−w− and |w |= w++w−, Lasso problem is:

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ

(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Objective is differentiable (in fact, convex and quadratic)
2d variables vs d variables
2d constraints vs no constraints
A “quadratic program”: a convex quadratic objective with linear
constraints.

Could plug this into a generic QP solver.
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`1 and `2 Regularization

Projected SGD

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ

(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Solution:

Take a stochastic gradient step
“Project” w+ and w− into the constraint set

In other words, any component of w+ or w− is negative, make it 0 .

Note: Sparsity pattern may change frequently as we iterate
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`1 and `2 Regularization

Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . .wd) over w = (w1, . . . ,wd) ∈ Rd .
Initialize w (0) = 0
while not converged:

Choose a coordinate j ∈ {1, . . . ,d}
wnew
j ← argminwj

L(w
(t)
1 , . . . ,w

(t)
j−1,wj,w

(t)
j+1, . . . ,w

(t)
d )

w (t+1)← w (t)

w
(t+1)
j ← wnew

j
t← t+1

For when it’s easier to minimize w.r.t. one coordinate at a time
Random coordinate choice =⇒ stochastic coordinate descent
Cyclic coordinate choice =⇒ cyclic coordinate descent
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`1 and `2 Regularization

Coordinate Descent Method for Lasso

Why mention coordinate descent for Lasso?
In Lasso, the coordinate minimization has a closed form solution!
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`1 and `2 Regularization

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

ŵj = argmin
wj∈R

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Then

ŵj(cj) =


(cj +λ)/aj if cj <−λ

0 if cj ∈ [−λ,λ]

(cj −λ)/aj if cj > λ

aj = 2
n∑

i=1

x2
ij cj = 2

n∑
i=1

xij(yi −wT
−jxi ,−j)

where w−j is w without component j and similarly for xi ,−j .
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`1 and `2 Regularization

The Coordinate Minimizer for Lasso

ŵj(cj) =


(cj +λ)/aj if cj <−λ

0 if cj ∈ [−λ,λ]

(cj −λ)/aj if cj > λ

KPM Figure 13.5
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`1 and `2 Regularization

Coordinate Descent Method – Variation

Suppose there’s no closed form? (e.g. logistic regression)
Do we really need to fully solve each inner minimization problem?
A single projected gradient step is enough for `1 regularization!

Shalev-Shwartz & Tewari’s “Stochastic Methods...” (2011)
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`1 and `2 Regularization

Stochastic Coordinate Descent for Lasso – Variation

Let w̃ = (w+,w−) ∈ R2d and

L(w̃) =

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ

(
w++w−

)

Stochastic Coordinate Descent for Lasso - Variation

Goal: Minimize L(w̃) s.t. w+
i ,w−

i > 0 for all i .
Initialize w̃ (0) = 0

while not converged:

Randomly choose a coordinate j ∈ {1, . . . ,2d}
w̃j ← w̃j +max

{
−w̃j ,−∇jL(w̃)

}
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`1 and `2 Regularization

The
(
`q
)q Norm Constraint

Generalize to `q norm: (‖w‖q)q = |w1|
q+ |w2|

q.
F = {f (x) = w1x1+w2x2}.
Contours of ‖w‖qq = |w1|

q+ |w2|
q:
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