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Regression Loss Functions

Loss Functions for Regression

In general, loss function may take the form

(ŷ ,y) 7→ `(ŷ ,y)

Regression losses usually only depend on the residual:

r = y − ŷ

(ŷ ,y) 7→ `(r) = `(y − ŷ)

When would you not want a translation-invariant loss?

Can you transform your response y so that the loss you want is
translation-invariant?
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Regression Loss Functions

Some Losses for Regression

Square or `2 Loss: `(r) = r2 (not robust)
Absolute or Laplace or `1 Loss: `(r) = |r | (not differentiable)

gives median regression

Huber Loss: Quadratic for |r |6 δ and linear for |r |> δ (robust and
differentiable)
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Classification Loss Functions

The Classification Problem

Action space A= {−1,1} Output space Y= {−1,1}
0-1 loss for f : X→ {−1,1}:

`(f (x),y) = 1(f (x) 6= y)

But let’s allow real-valued predictions f : X→ R:

f > 0 =⇒ Predict 1
f < 0 =⇒ Predict −1
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Classification Loss Functions

The Classification Problem: Real-Valued Predictions

Action space A= R Output space Y= {−1,1}
Prediction function f : X→ R

Definition
The value f (x) is called the score for the input x . Generally, the
magnitude of the score represents the confidence of our prediction.

Definition
The margin on an example (x ,y) is yf (x). The margin is a measure of
how correct we are.

We want to maximize the margin.
Most classification losses depend only on the margin.
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Classification Loss Functions

The Classification Problem: Real-Valued Predictions

Empirical risk for 0−1 loss:

R̂n(f ) =
1
n

n∑
i=1

1(yi f (xi )6 0)

Minimizing empirical 0−1 risk not computationally feasible

R̂n(f ) is non-convex, not differentiable (in fact, discontinuous!).
Optimization is NP-Hard.
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Classification Loss Functions

Classification Losses

Zero-One loss: `0-1 = 1(m 6 0)
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Classification Loss Functions

Classification Losses

SVM/Hinge loss: `Hinge =max {1−m,0}= (1−m)+

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at 1.
We have a “margin error” when m < 1.
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Classification Loss Functions

Classification Losses

Logistic/Log loss: `Logistic = log (1+ e−m)

Logistic loss is differentiable. Never enough margin for logistic loss.
How many support vectors?
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Classification Loss Functions

(Soft Margin) Linear Support Vector Machine

Hypothesis space F =
{
f (x) = wT x | w ∈ Rd

}
.

Loss `(m) = (1−m)+
`2 regularization

min
w∈Rd

n∑
i=1

(1− yi fw (xi ))++λ‖w‖22
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Classification Loss Functions

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent
initialize w = 0
repeat

randomly choose training point (xi ,yi ) ∈Dn

w ← w −η ∇w `(fw (xi ),yi )︸ ︷︷ ︸
Grad(Loss on i’th example)

until stopping criteria met
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Classification Loss Functions

SGD for Hinge Loss and Linear Predictors

Consider linear hypothesis space: fw (x) = wT x .
Gradient of hinge loss (x ,y):

∇w `Hinge(yw
T x) =


−yx if yfw (x)< 1
0 if yfw (x)> 1
undefined if yfw (x) = 1

A point with margin m = yfw (x) = 1 is correctly classified.

We can skip SGD update for these points.
Rigorous approach: subgradient descent
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Classification Loss Functions

SGD for Hinge Loss and Linear Predictors

For step t+1 of SGD, we select a random training point (x ,y) and set

w (t+1) =

{
w (t)+η(t)yx if yfw (x)< 1
w (t) otherwise

w (T) is a linear combination of xi ’s with margin error when selected.
Any xi in the expansion of w (T) is called a support vector.
We can write:

ŵ =

s∑
i=1

aix
(i),

where x(1), . . . ,x(s) are the support vectors.
Having 0 gradient for m > 1 allows sparse support vectors.
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Classification Loss Functions

Population Minimizers

The population minimizer is another name for risk minimizer.
It’s the “infinite data” case.

Hastie, Tibshirani, Friedman The Elements of Statistical Learning, 2nd Ed. Table 12.1
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