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Why Convex Optimization?

e Historically:

o Linear programs (linear objectives & constraints) were the focus
o Nonlinear programs: some easy, some hard

e Today:

e Main distinction is between convex and non-convex problems
e Convex problems are the ones we know how to solve efficiently

@ Many techniques that are well understood for convex problems are
applied to non-convex problems

e e.g. SGD is routinely applied to neural networks
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Introduction

Your Reference for Convex Optimization

@ Boyd and Vandenberghe (2004)

o Very clearly written, but has a ton of detail for a first pass.
o See my “Extreme Abridgement of Boyd and Vandenberghe'.

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization
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Notation from Boyd and Vandenberghe

e f:RP — RY to mean that f maps from some subset of RP

e namely dom f C RP, where dom f is the domain of f
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Convex Sets and Functions

Convex Sets

Definition

A set C is convex if for any x;,x; € C and any 0 with 0 <0 < 1 we have

Ox1+(1—0)xx € C.

KPM Fig_ 7.4
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Convex Sets and Functions

Convex and Concave Functions

Definition
A function f : R" = R is convex if dom f is a convex set and if for all
x,y €dom f, and 0 < 0 < 1, we have

f(Ox+(1—0)y) <Of(x)+(1—0)f(y).

KPM Fig. 7.5
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Convex Sets and Functions

Examples of Convex Functions on R

Examples
@ x> ax+ b is both convex and concave on Rfor all a,b € R.
@ x+ |x|P for p>1is convex on R

o x— e is convex on R for all a€ R
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Convex Sets and Functions

Maximum of Convex Functions is Convex

Theorem

is also convex with domain dom f =dom f,N---Ndom f,,.

This result extends to sup over arbitrary [infinite] sets of functions.
Proof.
(For m=2.) Fixan0< 0 <1andx,y €dom f. Then

f(Ox+(1-0)y) max{f1(0x+(1—-0)y), H(0x+(1—-0)y)}
max{0f (x) 4+ (1—0) fi(y), 0 (x) +(1—-0) f(y)}
max{0f(x),0f(x)}+max{(1—0) fi(y), (1—0) fa(y)}

0f(x)+(1—-0)f(y)

NN
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Convex Sets and Functions

Convex Functions and Optimization

Definition

A function f is strictly convex if the line segment connecting any two
points on the graph of f lies strictly above the graph (excluding the
endpoints).

Consequences for optimization:
@ convex: if there is a local minimum, then it is a global minimum

@ strictly convex: if there is a local minimum, then it is the unique
global minumum
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The General Optimization Problem

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m
hi(x) =0, i=1,...p,

where x € R" are the optimization variables and f; is the objective
function.

Assume domain D =" dom f;N(\?_; dom h; is nonempty.
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The General Optimization Problem

General Optimization Problem: More Terminology

The set of points satisfying the constraints is called the feasible set.

A point x in the feasible set is called a feasible point.
If x is feasible and f;(x) =0,

e then we say the inequality constraint f;(x) < 0 is active at x.

The optimal value p* of the problem is defined as

p* =inf{fo(x)|fi(x)<0,i=1,....,m, hi(x)=0,i=1,...,p}.

e x* is an optimal point (or a solution to the problem) if x* is feasible

and f(x*) = p*.
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The Lagrangian

Recall the general optimization problem:

minimize fo(x)
subject to fi(x)<0, i=1,....m
hI(X) = Ov = ' P,

Definition
The Lagrangian for the general optimization problem is

P
L(x,\ V) = folx +Z>\f )+ vihi(x)
i=1

@ A;'s and v's are called Lagrange multipliers
@ A and v also called the dual variables .
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The Lagrangian Encodes the Objective and Constraints

@ Supremum over Lagrangian gives back objective and constraints:

m p
sup L(X,)\,'V) = sup (fb(X)+Z)\,f;(X)+Z'V,h,(X),>
i=1 i=1

A=0,v A=0,v
B fo(x) fi(x)<0and hij(x)=0, all i
N (9 otherwise.

@ Equivalent primal form of optimization problem:

p" =inf sup L(x,A,Vv)
X A>0,v
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The Primal and the Dual

@ Original optimization problem in primal form:

p" =inf sup L(x,A,Vv)
X A>=0,v

@ The Lagrangian dual problem:

d* = sup infL(x,A,v)
A=0,v X

o We will show weak duality: p* > d* for any optimization problem

David Rosenberg (New York University)| DS-GA 1003 February 11, 2015 14 / 24



Weak Max-Min Inequality

Theorem
Forany f:R"xR™ — R, W CR", or ZC R™, we have

sup inf f(w,z) < inf supf(w,z).

Proof.
For any wg € W and zy € Z, we clearly have

inf f(w,z) < f(wo,20) < supf(wp,2z).
wew zeZ

Since this is true for all wy and zy, we must also have

sup inf f(w,z) < inf supf(wg,z).
ZoEZWGW woEW zc 7

y
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Weak Duality

e For any optimization problem (not just convex), weak max-min
inequality implies weak duality:

P
p* =inf sup |fo(x +Z?\ fi(x +ZVihi(X)]
X )\20,\/ =1
P
> sup inf [fo(x)+ ) Nfi(x)+ ) vihi(x)| =d”
A>0,v X olx Z ;

@ The difference p* —d* is called the duality gap.

@ For convex problems, we often have strong duality: p* = d*.
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The Lagrange Dual Function

@ The Lagrangian dual problem:
d* = sup inf L(x,A,Vv)

A=0,v . ,
Lagrange dual function

Definition

The Lagrange dual function (or just dual function) is

m P
g\ v) = Xigf@ L(x,A,v) = Xigf@ (fo(x) +;?\;f;(x) +§v;h;(x)> .

@ The dual function may take on the value —oco (e.g. fo(x) = x).
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The Lagrange Dual Problem

@ In terms of Lagrange dual function, we can write weak duality as

p* > sup g(Av)=d"
A>0,v

@ So for any (A,v) with A > 0, Lagrange dual function gives a lower
bound on optimal solution:

g\ v)<p*
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The Lagrange Dual Problem

@ The Lagrange dual problem is a search for best lower bound:

maximize g(A,v)
subject to A= 0.

e (A,v) dual feasible if A =0 and g(A,v) > —oc0.
o (A*,v*) are dual optimal or optimal Lagrange multipliers if they are
optimal for the Lagrange dual problem.

o Lagrange dual problem often easier to solve (simpler constraints).
@ d* can be used as stopping criterion for primal optimization.

@ Dual can reveal hidden structure in the solution.
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Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)

subject to fi(x)<0, i=1,....m

where fy, ..., f,, are convex functions.
Note: Equality constraints are now linear. Why?
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Strong Duality for Convex Problems

@ For a convex optimization problems, we usually have strong duality,
but not always.
e For example:
minimize e
subject to x?/y <0
y>0

@ The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui's EE 227A: Lecture 8 Notes, Feb 9, 2012
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Slater's Constraint Qualifications for Strong Duality

Sufficient conditions for strong duality in a convex problem.

Roughly: the problem must be strictly feasible.

Qualifications when problem domain D C R" is an open set:

e dx such that Ax=band f;(x) <0 fori=1,..., m
o For any affine inequality constraints, f;(x) <0 is sufficient

@ Otherwise, x must be in the “relative interior’ of D
e See notes, or BV Section 5.2.3, p. 226.
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Complementary Slackness

Complementary Slackness

Consider a general optimization problem (i.e. not necessarily convex).

If we have strong duality, we get an interesting relationship between

o the optimal Lagrange multiplier A; and
o the jth constraint at the optimum: f;(x™*)

Relationship is called “complementary slackness':

A fi(x*) =0

Lagrange multiplier is zero unless the constraint is active at the
optimum.
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Complementary Slackness

Complementary Slackness Proof

@ Assume strong duality: p* = d* in a general optimization problem
o Let x* be primal optimal and (A*,v*) be dual optimal. Then:

fo(x*) = g(A",v7)

m P
— agf<@(X)+Zx:ff;(x)+zv7‘hi(x)>
=1 i=1

m p

< H)+Y AR+ vihi(x")
=1 2 =1 5

< fo(x).
Each term in sum ) ;_; A*fi(x*) must actually be 0. That is
Aifi(x*)=0, i=1,...,m.

This condition is known as complementary slackness.
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