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Introduction

Why Convex Optimization?

Historically:

Linear programs (linear objectives & constraints) were the focus
Nonlinear programs: some easy, some hard

Today:

Main distinction is between convex and non-convex problems
Convex problems are the ones we know how to solve efficiently

Many techniques that are well understood for convex problems are
applied to non-convex problems

e.g. SGD is routinely applied to neural networks
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Introduction

Your Reference for Convex Optimization

Boyd and Vandenberghe (2004)
Very clearly written, but has a ton of detail for a first pass.
See my “Extreme Abridgement of Boyd and Vandenberghe”.
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Introduction

Notation from Boyd and Vandenberghe

f : Rp→ Rq to mean that f maps from some subset of Rp

namely dom f ⊂ Rp, where dom f is the domain of f
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Convex Sets and Functions

Convex Sets

Definition
A set C is convex if for any x1,x2 ∈ C and any θ with 06 θ6 1 we have

θx1+(1−θ)x2 ∈ C .

KPM Fig. 7.4
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Convex Sets and Functions

Convex and Concave Functions

Definition
A function f : Rn→ R is convex if dom f is a convex set and if for all
x ,y ∈ dom f , and 06 θ6 1, we have

f (θx +(1−θ)y)6 θf (x)+(1−θ)f (y).
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Convex Sets and Functions

Examples of Convex Functions on R

Examples
x 7→ ax +b is both convex and concave on Rfor all a,b ∈ R.
x 7→ |x |p for p > 1 is convex on R
x 7→ eax is convex on R for all a ∈ R
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Convex Sets and Functions

Maximum of Convex Functions is Convex

Theorem
If f1, . . . , fm : Rn→ R are convex, then their pointwise maximum

f (x) =max {f1(x), . . . , fm(x)}

is also convex with domain dom f = dom f1∩·· ·∩dom fm.

This result extends to sup over arbitrary [infinite] sets of functions.

Proof.
(For m = 2.) Fix an 06 θ6 1 and x ,y ∈ dom f . Then

f (θx +(1−θ)y) = max {f1(θx +(1−θ)y), f2(θx +(1−θ)y)}
6 max {θf1(x)+(1−θ) f1(y),θf2(x)+(1−θ) f2(y)}
6 max {θf1(x),θf2(x)}+max {(1−θ) f1(y),(1−θ) f2(y)}
= θf (x)+(1−θ)f (y)
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Convex Sets and Functions

Convex Functions and Optimization

Definition
A function f is strictly convex if the line segment connecting any two
points on the graph of f lies strictly above the graph (excluding the
endpoints).

Consequences for optimization:
convex: if there is a local minimum, then it is a global minimum
strictly convex: if there is a local minimum, then it is the unique
global minumum
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The General Optimization Problem

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . .p,

where x ∈ Rn are the optimization variables and f0 is the objective
function.

Assume domain D=
⋂m

i=0 dom fi ∩
⋂p

i=1 dom hi is nonempty.
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The General Optimization Problem

General Optimization Problem: More Terminology

The set of points satisfying the constraints is called the feasible set.
A point x in the feasible set is called a feasible point.
If x is feasible and fi (x) = 0,

then we say the inequality constraint fi (x)6 0 is active at x .

The optimal value p∗ of the problem is defined as

p∗ = inf {f0(x) | fi (x)6 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . ,p} .

x∗ is an optimal point (or a solution to the problem) if x∗ is feasible
and f (x∗) = p∗.
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Lagrangian Duality: Convexity not required

The Lagrangian

Recall the general optimization problem:

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . .p,

Definition
The Lagrangian for the general optimization problem is

L(x ,λ,ν) = f0(x)+
m∑
I=1

λi fi (x)+

p∑
i=1

νihi (x),

λi ’s and ν’s are called Lagrange multipliers
λ and ν also called the dual variables .
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Lagrangian Duality: Convexity not required

The Lagrangian Encodes the Objective and Constraints

Supremum over Lagrangian gives back objective and constraints:

sup
λ�0,ν

L(x ,λ,ν) = sup
λ�0,ν

(
f0(x)+

m∑
i=1

λi fi (x)+

p∑
i=1

νihi (x),

)

=

{
f0(x) fi (x)6 0 and hi (x) = 0, all i∞ otherwise.

Equivalent primal form of optimization problem:

p∗ = inf
x

sup
λ�0,ν

L(x ,λ,ν)
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Lagrangian Duality: Convexity not required

The Primal and the Dual

Original optimization problem in primal form:

p∗ = inf
x

sup
λ�0,ν

L(x ,λ,ν)

The Lagrangian dual problem:

d∗ = sup
λ�0,ν

inf
x
L(x ,λ,ν)

We will show weak duality: p∗ > d∗ for any optimization problem
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Lagrangian Duality: Convexity not required

Weak Max-Min Inequality

Theorem
For any f : Rn×Rm→ R,W ⊆ Rn, or Z ⊆ Rm, we have

sup
z∈Z

inf
w∈W

f (w ,z)6 inf
w∈W

sup
z∈Z

f (w ,z).

Proof.
For any w0 ∈W and z0 ∈ Z , we clearly have

inf
w∈W

f (w ,z0)6 f (w0,z0)6 sup
z∈Z

f (w0,z).

Since this is true for all w0 and z0, we must also have

sup
z0∈Z

inf
w∈W

f (w ,z0)6 inf
w0∈W

sup
z∈Z

f (w0,z).
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Lagrangian Duality: Convexity not required

Weak Duality

For any optimization problem (not just convex), weak max-min
inequality implies weak duality:

p∗ = inf
x

sup
λ>0,ν

[
f0(x)+

m∑
I=1

λi fi (x)+

p∑
i=1

νihi (x)

]

> sup
λ>0,ν

inf
x

[
f0(x)+

m∑
I=1

λi fi (x)+

p∑
i=1

νihi (x)

]
= d∗

The difference p∗−d∗ is called the duality gap.
For convex problems, we often have strong duality: p∗ = d∗.
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Lagrangian Duality: Convexity not required

The Lagrange Dual Function

The Lagrangian dual problem:

d∗ = sup
λ�0,ν

inf
x
L(x ,λ,ν)︸ ︷︷ ︸

Lagrange dual function

Definition
The Lagrange dual function (or just dual function) is

g(λ,ν) = inf
x∈D

L(x ,λ,ν) = inf
x∈D

(
f0(x)+

m∑
i=1

λi fi (x)+

p∑
i=1

νihi (x)

)
.

The dual function may take on the value −∞ (e.g. f0(x) = x).
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Lagrangian Duality: Convexity not required

The Lagrange Dual Problem

In terms of Lagrange dual function, we can write weak duality as

p∗ > sup
λ>0,ν

g(λ,ν) = d∗

So for any (λ,ν) with λ> 0, Lagrange dual function gives a lower
bound on optimal solution:

g(λ,ν)6 p∗
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Lagrangian Duality: Convexity not required

The Lagrange Dual Problem

The Lagrange dual problem is a search for best lower bound:

maximize g(λ,ν)

subject to λ� 0.

(λ,ν) dual feasible if λ� 0 and g(λ,ν)>−∞.
(λ∗,ν∗) are dual optimal or optimal Lagrange multipliers if they are
optimal for the Lagrange dual problem.

Lagrange dual problem often easier to solve (simpler constraints).
d∗ can be used as stopping criterion for primal optimization.
Dual can reveal hidden structure in the solution.
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Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m
aTi x = bi , i = 1, . . .p

where f0, . . . , fm are convex functions.
Note: Equality constraints are now linear. Why?
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Convex Optimization

Strong Duality for Convex Problems

For a convex optimization problems, we usually have strong duality,
but not always.

For example:

minimize e−x

subject to x2/y 6 0
y > 0

The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui’s EE 227A: Lecture 8 Notes, Feb 9, 2012
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Convex Optimization

Slater’s Constraint Qualifications for Strong Duality

Sufficient conditions for strong duality in a convex problem.
Roughly: the problem must be strictly feasible.
Qualifications when problem domain D⊂ Rn is an open set:

∃x such that Ax = b and fi (x)< 0 for i = 1, . . . ,m
For any affine inequality constraints, fi (x)6 0 is sufficient

Otherwise, x must be in the “relative interior” of D

See notes, or BV Section 5.2.3, p. 226.
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Complementary Slackness

Complementary Slackness

Consider a general optimization problem (i.e. not necessarily convex).
If we have strong duality, we get an interesting relationship between

the optimal Lagrange multiplier λi and
the ith constraint at the optimum: fi (x∗)

Relationship is called “complementary slackness”:

λ∗i fi (x
∗) = 0

Lagrange multiplier is zero unless the constraint is active at the
optimum.
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Complementary Slackness

Complementary Slackness Proof

Assume strong duality: p∗ = d∗ in a general optimization problem
Let x∗ be primal optimal and (λ∗,ν∗) be dual optimal. Then:

f0(x
∗) = g(λ∗,ν∗)

= inf
x

(
f0(x)+

m∑
I=1

λ∗i fi (x)+

p∑
i=1

ν∗i hi (x)

)

6 f0(x
∗)+

m∑
i=1

λ∗i fi (x
∗)︸ ︷︷ ︸

60

+

p∑
i=1

ν∗i hi (x
∗)︸ ︷︷ ︸

=0

6 f0(x
∗).

Each term in sum
∑

i=1λ
∗
i fi (x

∗) must actually be 0. That is

λ∗i fi (x
∗) = 0, i = 1, . . . ,m.

This condition is known as complementary slackness.
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