Lagrangian Duality and Convex Optimization

David Rosenberg

New York University

February 11, 2015
Why Convex Optimization?

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard

- Today:
 - Main distinction is between convex and non-convex problems
 - Convex problems are the ones we know how to solve efficiently
 - Many techniques that are well understood for convex problems are applied to non-convex problems
 - e.g. SGD is routinely applied to neural networks
Your Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See my “Extreme Abridgement of Boyd and Vandenberghe”.

![Convex Optimization book cover](image-url)
Notation from Boyd and Vandenberghe

- $f : \mathbb{R}^p \rightarrow \mathbb{R}^q$ to mean that f maps from some *subset* of \mathbb{R}^p
 - namely $\text{dom } f \subset \mathbb{R}^p$, where $\text{dom } f$ is the domain of f
Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \leq \theta \leq 1$ we have

$$\theta x_1 + (1-\theta)x_2 \in C.$$
Convex and Concave Functions

Definition
A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if $\text{dom } f$ is a convex set and if for all $x, y \in \text{dom } f$, and $0 \leq \theta \leq 1$, we have

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$$
Examples of Convex Functions on \mathbb{R}

Examples

- $x \mapsto ax + b$ is both convex and concave on \mathbb{R} for all $a, b \in \mathbb{R}$.
- $x \mapsto |x|^p$ for $p \geq 1$ is convex on \mathbb{R}
- $x \mapsto e^{ax}$ is convex on \mathbb{R} for all $a \in \mathbb{R}$
Maximum of Convex Functions is Convex

Theorem

If \(f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R} \) are convex, then their pointwise maximum

\[
f(x) = \max\{ f_1(x), \ldots, f_m(x) \}
\]

is also convex with domain \(\text{dom } f = \text{dom } f_1 \cap \cdots \cap \text{dom } f_m \).

This result extends to sup over arbitrary [infinite] sets of functions.

Proof.

(For \(m = 2 \).) Fix an \(0 \leq \theta \leq 1 \) and \(x, y \in \text{dom } f \). Then

\[
f(\theta x + (1-\theta) y) = \max\{ f_1(\theta x + (1-\theta) y), f_2(\theta x + (1-\theta) y) \} \\
\leq \max\{ \theta f_1(x) + (1-\theta) f_1(y), \theta f_2(x) + (1-\theta) f_2(y) \} \\
\leq \max\{ \theta f_1(x), \theta f_2(x) \} + \max\{ (1-\theta) f_1(y), (1-\theta) f_2(y) \} \\
= \theta f(x) + (1-\theta) f(y)
\]
Convex Functions and Optimization

Definition

A function f is strictly convex if the line segment connecting any two points on the graph of f lies strictly above the graph (excluding the endpoints).

Consequences for optimization:

- **convex**: if there is a local minimum, then it is a global minimum
- **strictly convex**: if there is a local minimum, then it is the unique global minimum
General Optimization Problem: Standard Form

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 0, \ i = 1, \ldots, m \)
\(h_i(x) = 0, \ i = 1, \ldots p, \)

where \(x \in R^n \) are the optimization variables and \(f_0 \) is the objective function.

Assume domain \(\mathcal{D} = \bigcap_{i=0}^{m} \text{dom} \ f_i \cap \bigcap_{i=1}^{p} \text{dom} \ h_i \) is nonempty.
The set of points satisfying the constraints is called the **feasible set**.

A point \(x \) in the feasible set is called a **feasible point**.

If \(x \) is feasible and \(f_i(x) = 0 \),

then we say the inequality constraint \(f_i(x) \leq 0 \) is **active** at \(x \).

The **optimal value** \(p^* \) of the problem is defined as

\[
p^* = \inf \{ f_0(x) \mid f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p \}.
\]

\(x^* \) is an **optimal point** (or a solution to the problem) if \(x^* \) is feasible and \(f(x^*) = p^* \).
The Lagrangian

Recall the general optimization problem:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p,
\end{align*}
\]

Definition

The **Lagrangian** for the general optimization problem is

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{l=1}^{m} \lambda_l f_l(x) + \sum_{i=1}^{p} \nu_i h_i(x),
\]

- \(\lambda_l\)'s and \(\nu\)'s are called **Lagrange multipliers**
- \(\lambda\) and \(\nu\) also called the **dual variables**.
The Lagrangian Encodes the Objective and Constraints

- Supremum over Lagrangian gives back objective and constraints:

$$
\sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) = \sup_{\lambda \geq 0, \nu} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x), \right)
$$

$$
= \begin{cases}
 f_0(x) & f_i(x) \leq 0 \text{ and } h_i(x) = 0, \text{ all } i \\
 \infty & \text{otherwise.}
\end{cases}
$$

- Equivalent **primal form** of optimization problem:

$$
p^* = \inf_{x} \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu)
$$
The Primal and the Dual

- Original optimization problem in **primal form**:

 \[p^* = \inf_x \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu) \]

- The **Lagrangian dual problem**:

 \[d^* = \sup_{\lambda \succeq 0, \nu} \inf_x L(x, \lambda, \nu) \]

- We will show **weak duality**: \(p^* \geq d^* \) for any optimization problem
Weak Max-Min Inequality

Theorem

For any $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, $W \subseteq \mathbb{R}^n$, or $Z \subseteq \mathbb{R}^m$, we have

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \leq \inf_{w \in W} \sup_{z \in Z} f(w, z).$$

Proof.

For any $w_0 \in W$ and $z_0 \in Z$, we clearly have

$$\inf_{w \in W} f(w, z_0) \leq f(w_0, z_0) \leq \sup_{z \in Z} f(w_0, z).$$

Since this is true for all w_0 and z_0, we must also have

$$\sup_{z_0 \in Z} \inf_{w \in W} f(w, z_0) \leq \inf_{w_0 \in W} \sup_{z \in Z} f(w_0, z).$$
Weak Duality

- For any optimization problem (not just convex), weak max-min inequality implies weak duality:

\[
p^* = \inf_{x} \sup_{\lambda \geq 0, \nu} \left[f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right] \\
\geq \sup_{\lambda \geq 0, \nu} \inf_{x} \left[f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right] = d^*
\]

- The difference \(p^* - d^* \) is called the duality gap.
- For convex problems, we often have strong duality: \(p^* = d^* \).
The Lagrange Dual Function

- The Lagrangian dual problem:

\[d^* = \sup_{\lambda \succeq 0, \nu} \inf_x L(x, \lambda, \nu) \]

\[L(x, \lambda, \nu) \]

Lagrange dual function

Definition

The Lagrange dual function (or just dual function) is

\[g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right). \]

- The dual function may take on the value \(-\infty\) (e.g. \(f_0(x) = x \)).
The Lagrange Dual Problem

- In terms of Lagrange dual function, we can write weak duality as

\[p^* \geq \sup_{\lambda \geq 0, \nu} g(\lambda, \nu) = d^* \]

- So for any \((\lambda, \nu)\) with \(\lambda \geq 0\), Lagrange dual function gives a lower bound on optimal solution:

\[g(\lambda, \nu) \leq p^* \]
The Lagrange Dual Problem

- The **Lagrange dual problem** is a search for best lower bound:

 \[
 \text{maximize} \quad g(\lambda, \nu) \\
 \text{subject to} \quad \lambda \succeq 0.
 \]

- \((\lambda, \nu)\) **dual feasible** if \(\lambda \succeq 0\) and \(g(\lambda, \nu) > -\infty\).
- \((\lambda^*, \nu^*)\) are **dual optimal** or **optimal Lagrange multipliers** if they are optimal for the Lagrange dual problem.

- Lagrange dual problem often easier to solve (simpler constraints).
- \(d^*\) can be used as stopping criterion for primal optimization.
- Dual can reveal hidden structure in the solution.
Convex Optimization Problem: Standard Form

$$\begin{align*}
& \text{minimize} & f_0(x) \\
& \text{subject to} & f_i(x) \leq 0, \; i = 1, \ldots, m \\
& & a_i^T x = b_i, \; i = 1, \ldots, p
\end{align*}$$

where f_0, \ldots, f_m are convex functions.

Note: Equality constraints are now linear. Why?
Strong Duality for Convex Problems

For a convex optimization problems, we **usually** have strong duality, but not always.

For example:

$$\begin{align*}
\text{minimize} & \quad e^{-x} \\
\text{subject to} & \quad x^2/y \leq 0 \\
& \quad y > 0
\end{align*}$$

The additional conditions needed are called **constraint qualifications**.
Slater’s Constraint Qualifications for Strong Duality

- Sufficient conditions for strong duality in a convex problem.
- Roughly: the problem must be strictly feasible.
- Qualifications when problem domain $\mathcal{D} \subseteq \mathbb{R}^n$ is an open set:
 - $\exists x$ such that $Ax = b$ and $f_i(x) < 0$ for $i = 1, \ldots, m$
 - For any affine inequality constraints, $f_i(x) \leq 0$ is sufficient
- Otherwise, x must be in the “relative interior” of \mathcal{D}
 - See notes, or BV Section 5.2.3, p. 226.
Consider a general optimization problem (i.e. not necessarily convex).

If we have strong duality, we get an interesting relationship between

- the optimal Lagrange multiplier λ_i and
- the ith constraint at the optimum: $f_i(x^*)$

Relationship is called “complementary slackness”:

$$\lambda_i^* f_i(x^*) = 0$$

Lagrange multiplier is zero unless the constraint is active at the optimum.
Complementary Slackness Proof

- Assume strong duality: \(p^* = d^* \) in a general optimization problem
- Let \(x^* \) be primal optimal and \((\lambda^*, \nu^*)\) be dual optimal. Then:

\[
\begin{align*}
 f_0(x^*) &= g(\lambda^*, \nu^*) \\
 &= \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \\
 \leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*) \\
 \leq f_0(x^*).
\end{align*}
\]

Each term in sum \(\sum_{i=1}^m \lambda_i^* f_i(x^*) \) must actually be 0. That is

\[
\lambda_i^* f_i(x^*) = 0, \quad i = 1, \ldots, m.
\]

This condition is known as complementary slackness.