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Support Vector Machine

@ Hypothesis space F = {f(x) =w'x+b|lweR9 be R}.
e (5 regularization (Tikhonov style)
@ Loss ¢(m) = (1—m)__

e Margin m = yf(x); "Positive part” (x); = x1(x > 0).

== Zero_One
== Hinge

Loss(m)

¥;

Margin m=yf(x)
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SVM Optimization Problem

The SVM prediction function is the solution to

) 1 5 C ° T
v I+ 52 (=[x b])

@ unconstrained optimization

@ not differentiable
e Can we reformulate into a differentiable problem?
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SVM Optimization Problem

@ The SVM optimization problem is equivalent to
mimize  LIwi?+SY &
minimize  —|lw - ;
2 - I
subject to & > (l—y,- [WTX,-—i- b} )Jr,
@ Which is equivalent to
1 C o
C . 2 )
minimize §||W|| "‘l_n-Zlal
i

Ofori=1,...,n
(1—y,- [WTX;-l-b]) fori=1,...,n

subject to &

P>
&i =
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SVM as a Quadratic Program

@ The SVM optimization problem is equivalent to
minimize 1|| ||2+Ci£
zZ —l|lw — ;
2 i I
subject to & >0fori=1,...,n
&> (l—y,- [WTX,-—i—b]) fori=1,...,n
@ Differentiable objective function
@ n+d+1 unknowns and 2n affine constraints.
@ A quadratic program that can be solved by any off-the-shelf QP solver.
@ Let's learn more by examining the dual!
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SVM Lagrangian

@ The Lagrangian for this formulation is

(wbaam

- 7||W||2+ Za,+za, (1—y; [wx;+b] — Z?\&,

i=1
c
— 2WTW+;£,‘ (;—oc,-—%,-) —i-;oc,- (1—y; [wTx +b]).
@ Primal and dual:

p* = inf sup L(w,b & o ])
w, &b o A0
> sup inf L(w,b& o, A)=d*
o A=0 Wb &

@ Do we have p* = d*?
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Strong Duality by Slater's constraint qualification

@ The SVM optimization problem is equivalent to

C 1 € —
minimize “w|?+ = E &

2 n—=

i

subject to &, >0fori=1,...,n

P
&i =

o Affine constraints = strong duality iff problem is feasible

o Constraints are satisfied by w=b=0and &; =1fori=1,...

e so we have strong duality —
p* = inf sup L(w,b,E& o)
w,&bx A-0

= sup inf L(w,b& o,A\)=d*
A=W b.E

(1—y,- [WTX,-—i—b]) fori=1,...,

1n1
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SVM Dual Function

Lagrange dual is the inf over primal variables of the Lagrangian:

glo,A\) = wi,T,caL(W' b, & o, A)

(1 : -
= wl,rt])],ca lszw+;£; (E—oc;—?\;) +;oc; (1—y; [WTX;er])

n

Note: g(x,A) =—oco when & —a; —A; #0. (send &; — +o0)
Function (w,&) — L(w, b, &, o, \) is convex and differentiable.
Thus optimal point iff 9,,L =00,L=00:L =0
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SVM Dual Function: First Order Conditions

@ Lagrange dual function is the inf over primal variables of L:

glo,A) = wlrtlfé Liw,b, &, o, )

S e TR D R ARe]

i=1

n n
Il=0 = w—) ayxi=0 < |[w=) iy
i=1 i=1

abL:O <~ —Zoc,-y;:O <~ ZCX,'y,'ZO
i=1 i=1

Bel=0 = T—a—A=0 <> atA="
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SVM Dual Function

@ Substituting these conditions back into L, the second term disappears.

@ First and third terms become

1 5 1 T
EW w = 5 Z OC,'(XJ'y,'_yJ'XI' X_]
',j:l
n
Zoc,-(l—y,- (wixi+b]) = Zoc, Z ooy xi — bZoc,y,.
i—1 Jj=1
1 J -
o Putting it together, the dual function is
1 T 3 7q %y =0
g(o,A) = L= 3 X7 Gy X T all
—00 otherwise.
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SVM Dual Problem

@ The dual function is

glo,A\) =

—00

e The dual problem is sup, »»og(c, A):

oA

n
s.t. Z ojyi =0
i=1

C
xi+Ai = N o, A

WV
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>, xiyi=0

oi+Aa=¢, all i
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SVM Dual Problem: Eliminating a Variable

@ Can eliminate the A variables:

sup E oc,—f E oGO YiYiX; x,
ij=1

X

s.t. ZOC,'y,':O
i—1
o € [o,f} i=1,....n
n

o Quadratic objective in n unknowns and 2n constraints

e Constraints are box constraints. (Simpler than primal constraints.)
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SVM Dual Problem: Connect to Primal

o Recall

n
dl=0 = w=> ayix;
i=1

o If o* is a solution to the dual problem, then

n
* 2 *
w = X; YiX;.
i=1

e Since o; € [0, £], we see that ¢ controls the amount of weight we can
put on any single example

o What's b?
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Complementary Slackness for the Finish

Complementary Slackness

e By strong duality, we have the following complementary slackness
conditions

o Lagrange multiplier is zero unless the [primal] constraint is active at the
optimum: “A%fi(x*) =0"

@ Our primal constraints:

()  (1—yi[x"w+b])—& <0fori=1,...,n
(7\,’) —E,,-gOforizl,...,n

@ Complementary slackness is about optimal primal and dual variables

o Let (W*,b*,i;‘) be primal optimal
o Let(o*,A*) be dual optimal
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The Bias Term: b

@ For our SVM primal, the complementary slackness conditions are:

o (1—yi [x,-TW*—i-b] —£&7)=0 (1)
}\i‘ii _<n O(’I>E'I 0 (2)
@ Suppose there's an i such that &} € (0, %)
@ (2) implies &7 =0.
e (1) implies
1—yi [x! w*+b*] =0
— X,-TW* +b* =y; (use y; € {—1,1})

— |[b' =y —xw*
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The Bias Term: b

@ The optimal b is
b* — i —X,'TW*
o We get the same b* for any choice of i with «F € (0, €)
o With exact calculations!

@ With numerical error,more robust to average over all eligible i's:
c
b* = mean {y,-—x,-Tw* | o € (0, 7) }
n

o If there are no «f € (0,€)?

e Then we have a degenerate SVM training problem (w* =0).
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Complementary Slackness for the Finish
The Margin

@ For notational convenience, define £*(x) :x,-TW* + b*.
e Margin yf*(x)

Loss(m)

V

Margin m=yf(x)

@ Incorrect classification: yf*(x) <0.

e Margin error: yf*(x) < 1.

@ “On the margin™: yf*(x) =1.

@ "“Good side of the margin™: yf*(x) > 1.
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Support Vectors and The Margin

@ Recall £F = (1—y;f*(x;)), the hinge loss on (x;,y;).
@ Suppose &F =0.
@ Then y;f* (X,') >1

e ‘on the margin” (=1), or
e “on the good side” (>1)
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Complementary Slackness for the Finish

Complementary Slackness Consequences

@ For our SVM primal, the complementary slackness conditions are:
of (1—yif*(x)) — &) =0
k gk C * *
A& = (E_o‘i) & =0
o If y;f*(x) > 1 then the margin loss is £ =0, and we get «} =0.
o If yif*(x;) <1 then the margin loss is £; >0, so o} = 7.
o If af =0, then £F =0, which implies no loss, so y;f*(x) > 1.
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Complementary Slackness for the Finish

Complementary Slackness Results: Summary

=0 = yf'(x)=1
o € (0, %) = yiff(x) =1

o == =y (x)<1
yif '(xi) <1 = oc}k:%
yif*(x)=1 = of € [0, %]
yif*(xi)>1 = of =0
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Kernelization?

Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

sup
x

s.t.
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