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Linear SVM

@ The SVM prediction function is the solution to

i 1 5 C - T
vemien I+ 5 2 Aoy [wTxiB])

e Found it's equivalent to solve the dual problem to get oc*:i

n n
1
sup Z Y Z OCiOij,')/ijTXi
« i=1 ij=1
n
s.t. Z xiyi=0
i=1

;€ |:0,£] i=1,...,n.
n

@ Notice: x's only show up as inner products with other x's.
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Kernelizing the SVM Dual

Kernelization

Definition

We say a machine learning method is kernelized if all references to inputs
x € X are through an inner product between pairs of points (x, y) for

x,y € RY.

So far, we've only partially kernelized SVM

We've shown that the training portion is kernelized. Later we'll show the
prediction portion is also kernelized.
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SVM Dual Problem

@ x's only show up in pairs of inner products: xJ-Tx,- = (Xj, Xi):

n n
1
sup E Oéi—§§ i oYy (X, Xi)
i—1

* ij=1

n
s.t. ZOL,‘)/,' =0
i=1

oc,-e[o,f] i=1...n
n

@ Then primal optimal solution is given as:

n

* *

w :E K YiXi
i=1

and for any «; € (0, ),
b* =y —x w*.
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SVM: Kernelizing b

e We found that for any j with «; € (0, €):

b* — yJ_XJTW*

n
-
= yimx | 2 oiyix
i=1
n
= )/j—ZOCTy,' (X5, xi) -
i=1
@ What about kernelizing w*?

n
* Z *
w = X; YiX;
i=1

@ Not obvious...
@ But we really only care about kernelizing the predictions 7*(x).
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Kernelizing the SVM Dual

SVM: Kernelizing Predictions f*(x)

e For any j with «; € (0, €):

"n

f*(x) = x"w*+b*

n
xT <Z oc}*y;x,-) + b*
i=1

n n
Y b+ (yj— 3w, <>>
i=1 i=1

@ We now have a fully kernelized version of SVM.

@ Can we kernelize the primal version of the SVM?
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Kernelizing the SVM Primal Problem

@ Primal SVM

: 1,2 €y T Ty
Lomin_liwl +n;(1—y, [wTxi+b]). .

@ From our study of the dual, found that

n

* k

w = E X YiXj.
i=1

@ So w* is a linear combination of the input vectors.

@ Restrict to optimization to w of the form

n
w= Z Bix;.
i=1
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Kernelizing the SVM Primal Problem

Some Vectorization

e Design matrix X € R"*9 has input vectors as rows:

X =
@ The contraint on w looks like
w1 | . | [31
w=| : =1 x1 Xp | = XTB
Wy | | Bn

@ So replace all w with X7, with p € R" unrestricted.
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The Kernel Matrix (or the Gram Matrix)

Definition
For a set of {x1,...,x,} and an inner product (-,-)on the set, the kernel
matrix or the Gram matrix is defined as

(xt,x1) o (xa, Xn)

K= (<Xivxj>)i,j -

(Xmx1) -+ (XnXn)

Then for the standard Euclidean inner product <X,‘,Xj> :x,-TxJ-, we have

K=xxT
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Kernelizing the SVM Primal Problem

Some Vectorization

@ Regularization Term:
Iwl*=wTw=pBTXXTp=p"Kp
@ Prediction on training point x;:

flx) = b+X,-TW

n
= bix | DB
j=1

= b+ZBjKij
j=1
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Kernelized Primal SVM

e Putting it together, kernelized primal SVM is

n n
BeRnbeREBT Py Z 1=yi |b+)_BiK;
i=1 j=1 n

@ We can write this as a differentiable, constrained optimization problem:

1
minimize §BTK[3+%1T£
subject to EX0
E-(1-YI[b+KBI]),

where Y =diag(y1,...,yn), 1 is a column vector of 1's, and =
represent element-wise vector inequality.
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Kernelized Primal SVM: Kernel Trick

o Kernelized primal SVM is

IpTkp+ S Z 1—y; |b+) BjK;

R" b R2
e < 1:1 j=1

+

@ We derived this with K = XX, which corresponds to the linear kernel.

@ Suppose we have another kernel defined in terms of a map ¢, i.e.

k(w,x) = (d(w), d(x)),

then we can just plug in the corresponding kernel matrix Ky to the
optimization problem above.

@ What kernels can be written as an inner product of feature vectors?
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Ridge Regression

@ Recall the ridge regression objective:
J(w) = [[1Xw =y +Allwlf.
e Differentiating and setting equal to zero ,we get
(XTX+AN)w = XTy

@ On board to review?
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Kernelizing Ridge Regression

Kernelizing Ridge Regression

@ So we have, for A > 0:

XTX+Aw = Xy
aw o= XTy—XTXw

w = XXT(y—XW)
w = X'«
for x =A"1(y — Xw) € R".
@ So w is "in the span of the data™:
| | X1
w=|[|xx - Xp = 01X1 + " KpXp
| | 0
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Kernelizing Ridge Regression

Kernelizing Ridge Regression

@ So plugging in w=XT« to

104 Ay — Xw)
A = y—XXTa
XXTa+Aa = y
(XXT+AM)o =y

o = (M+XXT)~

@ So we have «. How to do prediction?

Xw = X(XT«)

= (XXT)(AI+XxXT) 1y

@ To predict on new data, need the “cross-kernel” matrix, between new

and old data.
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Mercer's Theorem

Positive Semidefinite Matrices

Definition

A real, symmetric matrix M € R"*" is positive semidefinite (psd) if for
any x € R",

XTI\/IX>0.

Theorem

The following conditions are each necessary and sufficient for M to be
positive semidefinite:

e M has a “square root”, i.e. there exists R s.t. M =RTR.

o All eigenvalues of M are greater than or equal to 0.
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Mercer's Theorem

Positive Semidefinite Function

Definition
A symmetric kernel function k: X x X — R is positive semidefinite (psd)
if for any finite set {x1,...,x,} € X, the kernel matrix on this set
k(xi,x1) - kix1,xn)
K= (k(x,-,xj-))l.J = : .
k(xp,x1) - k(Xn Xn)
is a positive semidefinite matrix.
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Mercer's Theorem

Mercer's Theorem

Theorem

A symmetric function k(w, x) can be expressed an inner product

k(w,x) = (b(w), d(x))

for some & if and only if k(w,x) is positive semidefinite.

o If we start with a psd kernel, can we generate more?
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Additive Closure

@ Suppose ki and k» are psd kernels with feature maps ¢1 and ¢»
respectively.

@ Then
ki(w,x)+ ka(w, x)

is a psd kernel.

@ Proof: Concatenate the feature vectors to get

$(x) = (d1(x), d2(x]).

Then ¢ is a feature map for ki + ko.
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Mercer's Theorem

Closure under Positive Scaling

@ Suppose k is a psd kernel with feature maps ¢.

@ Then for any « >0,
ok

is a psd kernel.
@ Proof: Note that
d(x) = Vad(x)

is a feature map for ock.
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Mercer's Theorem

Scalar Function Gives a Kernel

@ For any function f(x),
k(w,x) =f(w)f(x)

is a kernel.

@ Proof: Let f(x) be the feature mapping. (It maps into a
1-dimensional feature space.)
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Mercer's Theorem

Closure under Hadamard Products

@ Suppose ki and kp are psd kernels with feature maps ¢1 and ¢,
respectively.

@ Then
ki (w, x)ko(w, x)

is a psd kernel.

@ Proof: Take the outer product of the feature vectors:

d(x) = b1(x) [a(x)] 7.

Note that ¢(x) is a matrix.

@ Continued...
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Closure under Hadamard Products

@ Then

(@), d(w)) = Y bx)b(w)
ij
= > [0 b2t [ba(w) la(w))T]

— ij ij
iJj

= D [p10x)]; [ba(x)); (b (w)]; [ba(w));

1J

1

J

= (Z [d)l(x)], [Cbl(W)],) (Z [(DZ(X)]J [¢2(W)]J)

= ki(w,x)ka(w,x)
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