Kernelizations

David Rosenberg

New York University

February 21, 2015
Linear SVM

- The SVM prediction function is the solution to

\[
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n (1 - y_i [w^T x_i + b])_+.
\]

- Found it’s equivalent to solve the dual problem to get \(\alpha^* \):

\[
\sup_{\alpha} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j
\]

\[
\text{s.t. } \sum_{i=1}^n \alpha_i y_i = 0
\]

\[
\alpha_i \in \left[0, \frac{c}{n} \right] \quad i = 1, \ldots, n.
\]

- Notice: \(x \)'s only show up as inner products with other \(x \)'s.
Definition

We say a machine learning method is **kernelized** if all references to inputs $x \in \mathcal{X}$ are through an inner product between pairs of points $\langle x, y \rangle$ for $x, y \in \mathbb{R}^d$.

So far, we’ve only partially kernelized SVM

We’ve shown that the training portion is kernelized. Later we’ll show the prediction portion is also kernelized.
SVM Dual Problem

- x's only show up in pairs of inner products: $x_j^T x_i = \langle x_j, x_i \rangle$:

$$\sup_{\alpha} \, \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_j, x_i \rangle$$

s.t.

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n} \right] \, \, i = 1, \ldots, n.$$

- Then primal optimal solution is given as:

$$w^* = \sum_{i=1}^{n} \alpha_i^* y_i x_i$$

and for any $\alpha_i \in \left(0, \frac{c}{n} \right)$,

$$b^* = y_i - x_i^T w^*.$$
SVM: Kernelizing b

- We found that for any j with $\alpha_j \in (0, \frac{c}{n})$:
 \[
 b^* = y_j - x_j^T w^* \\
 = y_j - x_j^T \left(\sum_{i=1}^{n} \alpha_i^* y_i x_i \right) \\
 = y_j - \sum_{i=1}^{n} \alpha_i^* y_i \langle x_j, x_i \rangle.
 \]

- What about kernelizing w^*?
 \[
 w^* = \sum_{i=1}^{n} \alpha_i^* y_i x_i
 \]

 - Not obvious...
 - But we really only care about kernelizing the predictions $f^*(x)$.
SVM: Kernelizing Predictions \(f^*(x) \)

- For any \(j \) with \(\alpha_j \in (0, \frac{c}{n}) \):

\[
\begin{align*}
 f^*(x) &= x^T w^* + b^* \\
 &= x^T \left(\sum_{i=1}^{n} \alpha_i^* y_i x_i \right) + b^* \\
 &= \sum_{i=1}^{n} \alpha_i^* y_i \langle x_i, x \rangle + \left(y_j - \sum_{i=1}^{n} \alpha_i^* y_i \langle x_j, x_i \rangle \right)
\end{align*}
\]

- We now have a fully kernelized version of SVM.
- Can we kernelize the primal version of the SVM?
Primal SVM

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [w^T x_i + b])_+.$$

From our study of the dual, found that

$$w^* = \sum_{i=1}^{n} \alpha_i^* y_i x_i.$$

So w^* is a linear combination of the input vectors.

Restrict to optimization to w of the form

$$w = \sum_{i=1}^{n} \beta_i x_i.$$
Some Vectorization

- **Design matrix** $X \in \mathbb{R}^{n \times d}$ has input vectors as rows:

\[
X = \begin{pmatrix}
-x_1 - \\
\vdots \\
-x_n -
\end{pmatrix}.
\]

- The constraint on w looks like

\[
w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix} = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = X^T \beta.
\]

- So replace all w with $X^T \beta$, with $\beta \in \mathbb{R}^n$ unrestricted.
The Kernel Matrix (or the Gram Matrix)

Definition

For a set of \(\{x_1, \ldots, x_n\} \) and an inner product \(\langle \cdot, \cdot \rangle \) on the set, the kernel matrix or the Gram matrix is defined as

\[
K = \left(\langle x_i, x_j \rangle \right)_{i,j} = \begin{pmatrix}
\langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\
\vdots & \ddots & \vdots \\
\langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle
\end{pmatrix}.
\]

Then for the standard Euclidean inner product \(\langle x_i, x_j \rangle = x_i^T x_j \), we have

\[
K = XX^T
\]
Some Vectorization

- Regularization Term:
 \[\|w\|^2 = w^T w = \beta^T XX^T \beta = \beta^T K \beta \]

- Prediction on training point \(x_i\):
 \[
 f(x_i) = b + x_i^T w \\
 = b + x_i^T \left(\sum_{j=1}^{n} \beta_j x_j \right) \\
 = b + \sum_{j=1}^{n} \beta_j K_{ij}
 \]
Kernelized Primal SVM

- Putting it together, kernelized primal SVM is

$$\min_{\beta \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \beta^T K \beta + \frac{c}{n} \sum_{i=1}^{n} \left(1 - y_i \left[b + \sum_{j=1}^{n} \beta_j K_{ij} \right] \right)$$

- We can write this as a differentiable, constrained optimization problem:

$$\text{minimize} \quad \frac{1}{2} \beta^T K \beta + \frac{c}{n} \mathbf{1}^T \xi$$

subject to

$$\xi \succeq 0$$

$$\xi \succeq (\mathbf{1} - Y \mathbf{[} b + K \beta \mathbf{]})$$,

where $Y = \text{diag}(y_1, \ldots, y_n)$, $\mathbf{1}$ is a column vector of 1’s, and \succeq represent element-wise vector inequality.
Kernelized Primal SVM: Kernel Trick

- Kernelized primal SVM is

\[
\min_{\beta \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \beta^T K \beta + \frac{c}{n} \sum_{i=1}^{n} \left(1 - y_i \left[b + \sum_{j=1}^{n} \beta_j K_{ij} \right] \right) +
\]

- We derived this with \(K = XX^T \), which corresponds to the linear kernel.

- Suppose we have another kernel defined in terms of a map \(\phi \), i.e.

\[
k(w, x) = \langle \phi(w), \phi(x) \rangle,
\]

then we can just plug in the corresponding kernel matrix \(K_\phi \) to the optimization problem above.

- What kernels can be written as an inner product of feature vectors?
Ridge Regression

- Recall the ridge regression objective:
 \[J(w) = \|Xw - y\|^2 + \lambda \|w\|^2. \]

- Differentiating and setting equal to zero, we get
 \[(X^TX + \lambda I)w = X^Ty \]

- On board to review?
Kernelizing Ridge Regression

- So we have, for $\lambda > 0$:

$$
(X^TX + \lambda I)w = X^Ty
$$
$$
\lambda w = X^Ty - X^T Xw
$$
$$
w = \frac{1}{\lambda}X^T(y - Xw)
$$
$$
w = X^T \alpha
$$

for $\alpha = \lambda^{-1}(y - Xw) \in \mathbb{R}^n$.

- So w is “in the span of the data”:

$$
w = \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}
= \alpha_1 x_1 + \cdots + \alpha_n x_n
$$
Kernelizing Ridge Regression

So plugging in \(w = X^T \alpha \) to

\[
\alpha = \lambda^{-1}(y - Xw) \\
\lambda \alpha = y - XX^T \alpha \\
XX^T \alpha + \lambda \alpha = y \\
(XX^T + \lambda I) \alpha = y \\
\alpha = (\lambda I + XX^T)^{-1}y
\]

So we have \(\alpha \). How to do prediction?

\[
Xw = X(X^T \alpha) \\
= (XX^T)(\lambda I + XX^T)^{-1}y
\]

To predict on new data, need the “cross-kernel” matrix, between new and old data.
Positive Semidefinite Matrices

Definition
A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if for any $x \in \mathbb{R}^n$,

$$x^T M x \geq 0.$$

Theorem
The following conditions are each necessary and sufficient for M to be positive semidefinite:

- M has a “square root”, i.e. there exists R s.t. $M = R^T R$.
- All eigenvalues of M are greater than or equal to 0.
Positive Semidefinite Function

Definition

A symmetric kernel function \(k : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) is positive semidefinite (psd) if for any finite set \(\{x_1, \ldots, x_n\} \in \mathcal{X} \), the kernel matrix on this set

\[
K = (k(x_i, x_j))_{i,j} = \begin{pmatrix}
k(x_1, x_1) & \cdots & k(x_1, x_n) \\
\vdots & \ddots & \vdots \\
k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{pmatrix}
\]

is a positive semidefinite matrix.
Mercer’s Theorem

Theorem

A symmetric function $k(w, x)$ can be expressed an inner product

$$k(w, x) = \langle \phi(w), \phi(x) \rangle$$

for some ϕ if and only if $k(w, x)$ is positive semidefinite.

- If we start with a psd kernel, can we generate more?
Suppose \(k_1 \) and \(k_2 \) are psd kernels with feature maps \(\phi_1 \) and \(\phi_2 \), respectively.

Then

\[
k_1(w, x) + k_2(w, x)
\]

is a psd kernel.

Proof: Concatenate the feature vectors to get

\[
\phi(x) = (\phi_1(x), \phi_2(x)).
\]

Then \(\phi \) is a feature map for \(k_1 + k_2 \).
Suppose k is a psd kernel with feature maps ϕ.

Then for any $\alpha > 0$, αk is a psd kernel.

Proof: Note that

$$\phi(x) = \sqrt{\alpha} \phi(x)$$

is a feature map for αk.
For any function $f(x)$,

$$k(w, x) = f(w)f(x)$$

is a kernel.

Proof: Let $f(x)$ be the feature mapping. (It maps into a 1-dimensional feature space.)

$$\langle f(x), f(w) \rangle = f(x)f(w) = k(w, x).$$
Mercer’s Theorem

Closure under Hadamard Products

- Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2, respectively.
- Then

$$k_1(w, x)k_2(w, x)$$

is a psd kernel.
- Proof: Take the outer product of the feature vectors:

$$\phi(x) = \phi_1(x)[\phi_2(x)]^T.$$

Note that $\phi(x)$ is a matrix.
- Continued...
Closure under Hadamard Products

Then

$$\langle \phi(x), \phi(w) \rangle = \sum_{i,j} \phi(x) \phi(w)$$

$$= \sum_{i,j} \left[\phi_1(x) \phi_2(x) \right]^T \left[\phi_1(w) \phi_2(w) \right]^T_{i,j}$$

$$= \sum_{i,j} \left[\phi_1(x) \right]_i \left[\phi_2(x) \right]_j \left[\phi_1(w) \right]_i \left[\phi_2(w) \right]_j$$

$$= \left(\sum_i \left[\phi_1(x) \right]_i \left[\phi_1(w) \right]_i \right) \left(\sum_j \left[\phi_2(x) \right]_j \left[\phi_2(w) \right]_j \right)$$

$$= k_1(w, x) k_2(w, x)$$