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Kernelizing the SVM Dual

Linear SVM

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

(
1− yi

[
wT xi +b

])
+
.

Found it’s equivalent to solve the dual problem to get α∗:i

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Notice: x ’s only show up as inner products with other x ’s.
David Rosenberg (New York University) DS-GA 1003 February 21, 2015 2 / 23



Kernelizing the SVM Dual

Kernelization

Definition
We say a machine learning method is kernelized if all references to inputs
x ∈ X are through an inner product between pairs of points 〈x ,y〉 for
x ,y ∈ Rd .

So far, we’ve only partially kernelized SVM
We’ve shown that the training portion is kernelized. Later we’ll show the
prediction portion is also kernelized.
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Kernelizing the SVM Dual

SVM Dual Problem

x ’s only show up in pairs of inner products: xTj xi = 〈xj ,xi 〉:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyj 〈xj ,xi 〉

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Then primal optimal solution is given as:

w∗ =
n∑

i=1

α∗i yixi

and for any αi ∈
(
0, cn
)
,

b∗ = yi − xTi w∗.
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Kernelizing the SVM Dual

SVM: Kernelizing b

We found that for any j with αj ∈
(
0, cn
)
:

b∗ = yj − xTj w∗

= yj − xTj

(
n∑

i=1

α∗i yixi

)
.

= yj −
n∑

i=1

α∗i yi 〈xj ,xi 〉 .

What about kernelizing w∗?

w∗ =
n∑

i=1

α∗i yixi

Not obvious...
But we really only care about kernelizing the predictions f ∗(x).
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Kernelizing the SVM Dual

SVM: Kernelizing Predictions f ∗(x)

For any j with αj ∈
(
0, cn
)
:

f ∗(x) = xTw∗+b∗

= xT

(
n∑

i=1

α∗i yixi

)
+b∗

=

n∑
i=1

α∗i yi 〈xi ,x〉+

(
yj −

n∑
i=1

α∗i yi 〈xj ,xi 〉

)

We now have a fully kernelized version of SVM.
Can we kernelize the primal version of the SVM?
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Kernelizing the SVM Primal Problem

Kernelizing the SVM Primal Problem

Primal SVM

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

(
1− yi

[
wT xi +b

])
+
.

From our study of the dual, found that

w∗ =
n∑

i=1

α∗i yixi .

So w∗ is a linear combination of the input vectors.
Restrict to optimization to w of the form

w =

n∑
i=1

βixi .
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Kernelizing the SVM Primal Problem

Some Vectorization

Design matrix X ∈ Rn×d has input vectors as rows:

X =

−x1−
...

−xn−

 .

The contraint on w looks like

w =

w1
...
wd

=

 | · · · |

x1 · · · xn
| · · · |


β1

...
βn

= XTβ.

So replace all w with XTβ, with β ∈ Rn unrestricted.
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Kernelizing the SVM Primal Problem

The Kernel Matrix (or the Gram Matrix)

Definition
For a set of {x1, . . . ,xn} and an inner product 〈·, ·〉on the set, the kernel
matrix or the Gram matrix is defined as

K =
(
〈xi ,xj〉

)
i ,j

=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 .

Then for the standard Euclidean inner product 〈xi ,xj〉= xTi xj , we have

K = XXT
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Kernelizing the SVM Primal Problem

Some Vectorization

Regularization Term:

‖w‖2 = wTw = βTXXTβ= βTKβ

Prediction on training point xi :

f (xi ) = b+ xTi w

= b+ xTi

 n∑
j=1

βjxj


= b+

n∑
j=1

βjKij
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Kernelizing the SVM Primal Problem

Kernelized Primal SVM

Putting it together, kernelized primal SVM is

min
β∈Rn,b∈R

1
2
βTKβ+

c

n

n∑
i=1

1− yi

b+ n∑
j=1

βjKij


+

.

We can write this as a differentiable, constrained optimization problem:

minimize
1
2
βTKβ+

c

n
1Tξ

subject to ξ� 0
ξ� (1−Y [b+Kβ]) ,

where Y = diag(y1, . . . ,yn), 1 is a column vector of 1’s, and �
represent element-wise vector inequality.
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Kernelizing the SVM Primal Problem

Kernelized Primal SVM: Kernel Trick

Kernelized primal SVM is

min
β∈Rn,b∈R

1
2
βTKβ+

c

n

n∑
i=1

1− yi

b+ n∑
j=1

βjKij


+

.

We derived this with K = XXT , which corresponds to the linear kernel.
Suppose we have another kernel defined in terms of a map φ, i.e.

k(w ,x) = 〈φ(w),φ(x)〉 ,

then we can just plug in the corresponding kernel matrix Kφ to the
optimization problem above.
What kernels can be written as an inner product of feature vectors?
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Kernelizing Ridge Regression

Ridge Regression

Recall the ridge regression objective:

J(w) = ||Xw − y ||2+λ||w ||2.

Differentiating and setting equal to zero ,we get(
XTX +λI

)
w = XT y

On board to review?
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Kernelizing Ridge Regression

Kernelizing Ridge Regression

So we have, for λ > 0:

(XTX +λI )w = XT y

λw = XT y −XTXw

w =
1
λ
XT (y −Xw)

w = XTα

for α= λ−1(y −Xw) ∈ Rn.
So w is “ in the span of the data”:

w =

 | · · · |

x1 · · · xn
| · · · |


α1

...
αn

= α1x1+ · · ·αnxn
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Kernelizing Ridge Regression

Kernelizing Ridge Regression

So plugging in w = XTα to

α = λ−1(y −Xw)

λα = y −XXTα

XXTα+λα = y(
XXT +λI

)
α = y

α = (λI +XXT )−1y

So we have α. How to do prediction?

Xw = X
(
XTα

)
=

(
XXT

)
(λI +XXT )−1y

To predict on new data, need the “cross-kernel” matrix, between new
and old data.
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Mercer’s Theorem

Positive Semidefinite Matrices

Definition

A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for
any x ∈ Rn,

xTMx > 0.

Theorem
The following conditions are each necessary and sufficient for M to be
positive semidefinite:

M has a “square root”, i.e. there exists R s.t. M = RTR .
All eigenvalues of M are greater than or equal to 0.
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Mercer’s Theorem

Positive Semidefinite Function

Definition
A symmetric kernel function k : X×X→ R is positive semidefinite (psd)
if for any finite set {x1, . . . ,xn} ∈ X, the kernel matrix on this set

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


is a positive semidefinite matrix.
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Mercer’s Theorem

Mercer’s Theorem

Theorem
A symmetric function k(w ,x) can be expressed an inner product

k(w ,x) = 〈φ(w),φ(x)〉

for some φ if and only if k(w ,x) is positive semidefinite.

If we start with a psd kernel, can we generate more?
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Mercer’s Theorem

Additive Closure

Suppose k1 and k2 are psd kernels with feature maps φ1 and φ2
,respectively.
Then

k1(w ,x)+k2(w ,x)

is a psd kernel.
Proof: Concatenate the feature vectors to get

φ(x) = (φ1(x),φ2(x)) .

Then φ is a feature map for k1+k2.
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Mercer’s Theorem

Closure under Positive Scaling

Suppose k is a psd kernel with feature maps φ.
Then for any α > 0,

αk

is a psd kernel.
Proof: Note that

φ(x) =
√
αφ(x)

is a feature map for αk .
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Mercer’s Theorem

Scalar Function Gives a Kernel

For any function f (x),

k(w ,x) = f (w)f (x)

is a kernel.
Proof: Let f (x) be the feature mapping. (It maps into a
1-dimensional feature space.)

〈f (x), f (w)〉= f (x)f (w) = k(w ,x).
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Mercer’s Theorem

Closure under Hadamard Products

Suppose k1 and k2 are psd kernels with feature maps φ1 and φ2,
respectively.
Then

k1(w ,x)k2(w ,x)

is a psd kernel.
Proof: Take the outer product of the feature vectors:

φ(x) = φ1(x) [φ2(x)]
T .

Note that φ(x) is a matrix.
Continued...
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Mercer’s Theorem

Closure under Hadamard Products

Then

〈φ(x),φ(w)〉 =
∑
i ,j

φ(x)φ(w)

=
∑
i ,j

[
φ1(x) [φ2(x)]

T
]
ij

[
φ1(w) [φ2(w)]T

]
ij

=
∑
i ,j

[φ1(x)]i [φ2(x)]j [φ1(w)]i [φ2(w)]j

=

(∑
i

[φ1(x)]i [φ1(w)]i

)∑
j

[φ2(x)]j [φ2(w)]j


= k1(w ,x)k2(w ,x)
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