Kernel Methods: High Level View

David Rosenberg

New York University

February 18, 2015

The Input Space $\boldsymbol{\mathfrak{X}}$

- \bullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathfrak{X} = \mathbf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Linear SVM

Feature Extraction

Definition

Mapping an input from \mathcal{X} to a vector in \mathbf{R}^d is called **feature extraction** or **featurization**.

Raw Input Feature Vector \mathcal{X} $\stackrel{x}{\longrightarrow}$ $\stackrel{feature}{\overset{\phi(x)}{\longrightarrow}}$ \mathbb{R}^d

• e.g. Quadratic feature map: $\mathcal{X} = \mathbf{R}^d$

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T.$$

High-Dimensional Features Good but Expensive

- To get expressive hypothesis spaces using linear models,
 - need high-dimensional feature spaces
- But more costly in terms of computation and memory.

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if inputs only appear inside inner products: $\langle \phi(x), \phi(y) \rangle$ for $x, y \in \mathcal{X}$.

The function

$$k(x,y) = \langle \phi(x), \phi(y) \rangle$$

is called the kernel function.

Kernel Evaluation Can Be Fast

Example

Quadratic feature map

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

has dimension $O(d^2)$, but

$$k(w, x) = \langle \phi(w), \phi(x) \rangle = \langle w, x \rangle + \langle w, x \rangle^{2}$$

- Naively explicit computation of k(w, x): $O(d^2)$
- Implicit computation of k(w, x): O(d)

Recap

- **1** Given a kernelized ML algorithm.
- 2 Can swap out the inner product for a new kernel function.
- **③** New kernel may correspond to a high dimensional feature space.
- Omputational cost is independent of dimension