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The Input Space X

Our general learning theory setup: no assumptions about X
But X= Rd for the specific methods we’ve developed:

Ridge regression
Lasso regression
Linear SVM
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Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or
featurization.

e.g. Quadratic feature map: X= Rd
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High-Dimensional Features Good but Expensive

To get expressive hypothesis spaces using linear models,

need high-dimensional feature spaces

But more costly in terms of computation and memory.
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Some Methods Can Be “Kernelized”

Definition
A method is kernelized if inputs only appear inside inner products:
〈φ(x),φ(y)〉 for x ,y ∈ X.

The function
k(x ,y) = 〈φ(x),φ(y)〉

is called the kernel function.
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Kernel Evaluation Can Be Fast

Example
Quadratic feature map

φ(x) = (x1, . . . ,xd ,x
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has dimension O(d2), but

k(w ,x) = 〈φ(w),φ(x)〉= 〈w ,x〉+ 〈w ,x〉2

Naively explicit computation of k(w ,x): O(d2)

Implicit computation of k(w ,x): O(d)
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Recap

1 Given a kernelized ML algorithm.
2 Can swap out the inner product for a new kernel function.
3 New kernel may correspond to a high dimensional feature space.
4 Computational cost is independent of dimension
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