Kernel Methods

David Rosenberg

New York University

February 18, 2015

Feature Extraction

- Focus on effectively representing $x \in \mathcal{X}$ as a vector $\phi(x) \in \mathbf{R}^d$.
- e.g. Bag of words:

[VentureBeat] As Android's reach expands, Google attracts fewer pioneer partners. The official theme of Google IO last week was Design, Develop and Distribute — but the unofficial one was Android Everywhere, as the mobile OS mounted new and renewed assaults on families of consumer devices.

Android: 2 Google: 2 IO: 1 Design: 1 Develop: 1 Distribute: 1 mobile: 1

Kernel Methods

• Primary focus is on comparing two inputs $w, x \in \mathcal{X}$.

Definition

A **kernel** is a function that takes a pair of inputs $w, x \in \mathcal{X}$ and returns a real value. That is, $k : \mathcal{X} \times \mathcal{X} \to \mathbf{R}$.

- Can interpret k(w, x) as a similarity score, but this is not precise.
- We will deal with symmetric kernels: k(w, x) = k(x, w).

Comparing Documents

[VentureBeat] As Android's reach expands, Google attracts fewer pioneer partners. The official theme of Google IO last week was Design, Develop and Distribute — but the unofficial one was Android Everywhere, as the mobile OS mounted new and renewed assaults on families of consumer devices. [Twitter Tweet] Google to take back platform control with Android Wear, Android TV, and Android Auto. This is good from a UI unity perspective, but it could potentially impact Android's openness. What are your thoughts on OEM customizations and their impact on Android as a platform?

Comparing Documents: Bag of Words

[VentureBeat] As Android's reach expands, Google attracts fewer pioneer partners. The official theme of Google IO last week was Design, Develop and Distribute — but the unofficial one was Android Everywhere, as the mobile OS mounted new and renewed assaults on families of consumer devices. [Twitter Tweet] Google to take back platform control with Android Wear, Android TV, and Android Auto. This is good from a UI unity perspective, but it could potentially impact Android's openness. What are your thoughts on OEM customizations and their impact on Android as a platform?

Android: 2
Google: 2
IO: 1
Design: l
Develop: 1
Distribute: 1
mobile: l

Android: 5	
Google: 1	
UI: 1	
OEM: 1	
platform: 1	
Wear: 1	
TV: 1	

Comparing Documents: Bag of Words

[VentureBeat] As Android's reach expands, Google attracts fewer pioneer partners. The official theme of Google IO last week was Design, Develop and Distribute — but the unofficial one was Android Everywhere, as the mobile OS mounted new and renewed assaults on families of consumer devices. [Twitter Tweet] Google to take back platform control with Android Wear, Android TV, and Android Auto. This is good from a UI unity perspective, but it could potentially impact Android's openness. What are your thoughts on OEM customizations and their impact on Android as a platform?

Android: 2
Google: 2
IO: 1
Design: 1
Develop: 1
Distribute: 1
mobile: l

Android: 5

Google: 1 UI: 1 OEM: 1 platform: 1 Wear: 1 TV: 1

Comparing Documents: Cosine Similarity

Android: 2
Google: 2
IO: 1
Design: 1
Develop: 1
Distribute: 1
mobile: l

Android: 5 Google: 1 UI: 1 OEM: 1 platform: 1 Wear: 1 TV: 1

• Normalize each feature vector to have $||x||_2 = 1$.

Comparing Documents

Android: .55
Google: .55
IO: .28
Design: .28
Develop: .28
Distribute: .28
mobile: .28

Android: .90 Google: .18 UI: .18 OEM: .18 platform: .18 Wear: .18 TV: .18

• Normalize each feature vector to have $||x||_2 = 1$.

2 Take inner product

Comparing Documents: Cosine Similarity

- Normalize each feature vector to have $||x||_2 = 1$.
- 2 Take inner product
- Then define

k(VentureBeat, Twitter Tweet) = 0.85

Cosine Similarity Kernel

• Why the name? Recall

$$\langle w, x \rangle = \|w\| \|x\| \cos \theta,$$

where θ is the angle between $w, x \in \mathbb{R}^d$. • So

$$k(w, x) = \cos \theta = \left\langle \frac{w}{\|w\|}, \frac{x}{\|x\|} \right\rangle$$

Linear Kernel

• Input space $\mathfrak{X} = \mathbf{R}^d$

$$k(w, x) = w^T x$$

- When we "kernelize" an algorithm, we write it in terms of the linear kernel.
- Then we can swap it out a replace it with a more sophisticated kernel

Quadratic Kernel in \mathbf{R}^2

- Input space $\mathcal{X} = \mathbf{R}^2$
- Feature map:

$$\phi: (x_1, x_2) \mapsto (x_1, x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

- Gives us ability to represent conic section boundaries.
- Define kernel as inner product in feature space:

$$k(w,x) = \langle \phi(w), \phi(x) \rangle$$

= $w_1 x_1 + w_2 x_2 + w_1^2 x_1^2 + w_2^2 x_2^2 + 2w_1 w_2 x_1 x_2$
= $w_1 x_1 + w_2 x_2 + (w_1 x_1)^2 + (w_2 x_2)^2 + 2(w_1 x_1)(w_2 x_2)$
= $\langle w, x \rangle + \langle w, x \rangle^2$

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.

Quadratic Kernel in \mathbf{R}^d

- Input space $\mathcal{X} = \mathbf{R}^d$
- Feature map:

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

• Number of terms = $d + d(d+1)/2 \approx d^2/2$.

Still have

$$k(w, x) = \langle \phi(w), \phi(x) \rangle$$
$$= \langle x, y \rangle + \langle x, y \rangle^{2}$$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.

Polynomial Kernel in \mathbf{R}^d

- Input space $\mathcal{X} = \mathbf{R}^d$
- Kernel function:

$$k(w, x) = (1 + \langle w, x \rangle)^M$$

- Corresponds to a feature map with all terms up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in *M*.

Radial Basis Function (RBF) Kernel

• Input space $\mathcal{X} = \mathbf{R}^d$

$$k(w, x) = \exp\left(-\frac{\|w-x\|^2}{2\sigma^2}\right),$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinte dimensional feature vector
- Probably the most common nonlinear kernel.

Feature Vectors from a Kernel

- So what can we do with a kernel?
- We can generate feature vectors:
- Idea: Characterize input x by its similarity to r fixed prototypes in \mathcal{X} .

Definition

A kernelized feature vector for an input $x \in \mathcal{X}$ with respect to a kernel k and prototype points $\mu_1, \ldots, \mu_r \in \mathcal{X}$ is given by

$$\Phi(x) = [k(x, \mu_1), \ldots, k(x, \mu_r)] \in \mathbf{R}^r.$$

Kernel Machines

Definition

A kernel machine is a linear model with kernelized feature vectors.

This corresponds to a prediction functions of the form

$$f(x) = \alpha^T \Phi(x)$$

= $\sum_{i=1}^r \alpha_i k(x, \mu_i),$

for $\alpha \in \mathbf{R}^r$.

An Interpretation

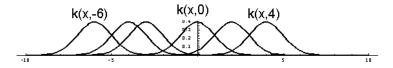
For each μ_i , we get a function on \mathfrak{X} :

 $x \mapsto k(x, \mu_i)$

f(x) is a linear combination of these functions.

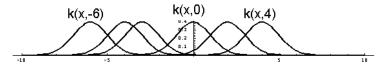
Kernel Machine Basis Functions

- Input space $\mathcal{X} = \mathbf{R}$
- RBF kernel $k(w, x) = \exp\left(-(w-x)^2\right)$.
- Prototypes at {-6, -4, -3, 0, 2, 4}.
- Corresponding basis functions:

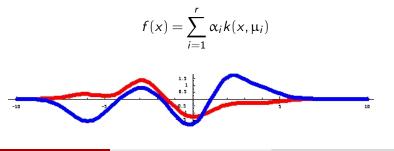


Kernel Machine Prediction Functions

Basis functions

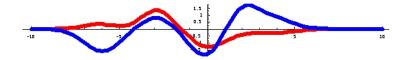


• Predictions of the form



RBF Network

- An **RBF** network is a linear model with an RBF kernel.
 - First described in 1988 by Broomhead and Lowe (neural network literature)



- Characteristics:
 - Nonlinear
 - Smoothness depends on RBF kernel bandwidth

How to Choose Prototypes

- Uniform grid on space?
 - only feasible in low dimensions
 - where to focus the grid?
- Cluster centers of training data?
 - Possible, but clustering is difficult in high dimensions
- Use all (or a subset of) the training points
 - Most common approach for kernel methods

All Training Points as Prototypes

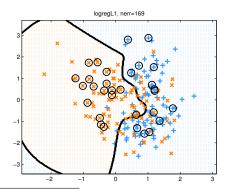
- Consider training inputs $x_1, \ldots, x_n \in \mathcal{X}$
- Then

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i).$$

- Requires all training examples for prediction?
- Not quite: Only need x_i for $\alpha_i \neq 0$.
- Want α_i 's to be sparse.
 - Train with ℓ_1 regularization: ℓ_1 -regularized vector machine
 - [Will show SVM also gives sparse functions of this form.]

ℓ_1 -Regularized Vector Machine

- RBF Kernel with bandwidth $\sigma = 0.3.$
- Linear hypothesis space: $\mathcal{F} = \{f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i) \mid \alpha \in \mathbb{R}^n\}.$
- Logistic loss function: $\ell(y, \hat{y}) = \log (1 + e^{-y\hat{y}})$
- l_1 -regularization, n = 200 training points

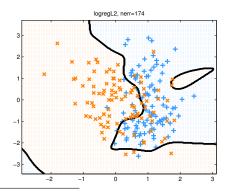


KPM Figure 14.4b

David Rosenberg (New York University)

ℓ_2 -Regularized Vector Machine

- RBF Kernel with bandwidth $\sigma = 0.3.$
- Linear hypothesis space: $\mathcal{F} = \{f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i) \mid \alpha \in \mathbb{R}^n\}.$
- Logistic loss function: $\ell(y, \hat{y}) = \log (1 + e^{-y\hat{y}})$
- ℓ_2 -regularization, n = 200 training points



KPM Figure 14.4a

David Rosenberg (New York University)

ℓ_2 -Regularized Vector Machine for Regression

- Kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ is symmetric (but nothing else).
- Hypothesis space (linear functions on kernelized feature vector)

$$\mathcal{F} = \left\{ f_{\alpha}(x) = \sum_{i=1}^{n} \alpha_{i} k(x, x_{i}) \mid \alpha \in \mathbf{R}^{n} \right\}$$

• Objective function (square loss with ℓ_2 regularization):

$$J(\alpha) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\alpha}(x_i))^2 + \lambda \alpha^T \alpha,$$

where

$$f_{\alpha}(x_i) = \sum_{j=1}^n \alpha_j k(x_i, x_j).$$

• Note: All dependence on x's is via the kernel function.

The Kernel Matrix

Note that

$$f(x_i) = \sum_{j=1}^n \alpha_j k(x_i, x_j)$$

only depends on the kernel function on all pairs of n training points.

Definition

The kernel matrix for a kernel k on a set $\{x_1, \ldots, x_n\}$ as

$$\mathcal{K} = \left(k(x_i, x_j)\right)_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbf{R}^{n \times n}.$$

Vectorizing the Vector Machine

Claim: $K\alpha$ gives the prediction vector $(f_{\alpha}(x_1), \ldots, f_{\alpha}(x_n))^T$:

$$\begin{aligned}
\mathcal{K}\alpha &= \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \\
&= \begin{pmatrix} \alpha_1 k(x_1, x_1) + \cdots + \alpha_n k(x_1, x_n) \\ \vdots \\ \alpha_1 k(x_n, x_1) + \cdots + \alpha_n k(x_1, x_n) \end{pmatrix} \\
&= \begin{pmatrix} f_\alpha(x_1) \\ \vdots \\ f_\alpha(x_n) \end{pmatrix}.
\end{aligned}$$

Vectorizing the Vector Machine

• The *i*th residual is $y_i - f_{\alpha}(x_i)$. We can vectorize as:

$$y - K\alpha = \begin{pmatrix} y_1 - f_{\alpha}(x_1) \\ \vdots \\ y_n - f_{\alpha}(x_n) \end{pmatrix}$$

• Sum of square residuals is

$$(y-K\alpha)^T(y-K\alpha)$$

• Objective function:

$$J(\alpha) = \frac{1}{n} \|y - K\alpha\|^2 + \lambda \alpha^T \alpha$$

Vectorizing the Vector Machine

- Consider $\mathcal{X} = \mathbf{R}^d$ and $k(w, x) = w^T x$ (linear kernel)
- Let X ∈ R^{n×d} be the design matrix, which has each input vector as a row:

$$X = \begin{pmatrix} -x_1 - \\ \vdots \\ -x_n - \end{pmatrix}.$$

• Then the kernel matrix is

$$K = XX^{T} = \begin{pmatrix} -x_{1} - \\ \vdots \\ -x_{n} - \end{pmatrix} \begin{pmatrix} | & \cdots & | \\ x_{1} & \cdots & x_{n} \\ | & \cdots & | \end{pmatrix}$$

And the objective function is

$$J(\alpha) = \frac{1}{n} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{X}^{T} \boldsymbol{\alpha} \|^{2} + \lambda \boldsymbol{\alpha}^{T} \boldsymbol{\alpha}$$

Features vs Kernels

Theorem

Suppose a kernel can be written as an inner product:

$$k(w, x) = \langle \phi(w), \phi(x) \rangle.$$

Then the kernel machine is a **linear classifier** with feature map $\phi(x)$.

• Mercer's Theorem characterizes kernels with these properties.

Features vs Kernels

Proof.

For prototype points x_1, \ldots, x_r ,

$$f(x) = \sum_{i=1}^{r} \alpha_i k(x, x_i)$$
$$= \sum_{i=1}^{r} \alpha_i \langle \phi(x), \phi(x_i) \rangle$$
$$= \left\langle \sum_{i=1}^{r} \alpha_i \phi(x_i), \phi(x) \right\rangle$$
$$= w^T \phi(x)$$

where $w = \sum_{i=1}^{r} \alpha_i \phi(x_i)$.