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Parameter Tuning

Parameter Tuning

Can start by trying many different orders of magnitude

10−5,10−4, . . . ,10−1,100,101, . . . ,104,105

2−10,2−9, . . . ,2−1,20,21, . . . ,29,210

See where the action is... and zoom in!
Keep zooming in until things aren’t improving on validation set.

David Rosenberg (New York University) DS-GA 1003 March 2, 2015 2 / 12



Parameter Tuning

Parameter Tuning

If you want to plot all values on one graph, you may want to take
logarithms of your axes.
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Lasso: Coordinate Descent vs SGD

SGD For Total Loss vs Average Loss

Suppose we write linear regression objective as

J(w) =

n∑
i=1

(wT xi − yi )
2

Then we can do gradient descent using this step direction:

−∇J(w) = −

n∑
i=1

2
(
wT xi − yi

)
xi

What about stochastic gradient descent?
Do we just choose a random (xi ,yi ) and step in direction

−2
(
wT xi − yi

)
xi?
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Lasso: Coordinate Descent vs SGD

SGD Step and Gradient Step Should have Same Expectation

Expectation of gradient step is

E [−∇J(w)] = −E

[
n∑

i=1

2
(
wTXi −Yi

)
Xi

]

= −

n∑
i=1

E
[
2
(
wTXi −Yi

)
Xi

]
= −nE

[
2
(
wTX −Y

)
X
]

Which is n times

−E
[
2
(
wTXi −Yi

)
Xi

]
=−E

[
2
(
wTX −Y

)
X
]

Proper SGD step for this objective is

−n×2
(
wTXi −Yi

)
Xi

Alternatively, divide original objective by n.
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Lasso: Coordinate Descent vs SGD

SGD For Total Loss vs Average Loss

So we had

J(w) =

n∑
i=1

(wT xi − yi )
2

Proper SGD step is

−n×2
(
wTXi −Yi

)
Xi

What if we take step

−2
(
wTXi −Yi

)
Xi?

Then we’re optimizing

J1(w) =
1
n

n∑
i=1

(wT xi − yi )
2

Does it matter?
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Lasso: Coordinate Descent vs SGD

SGD For Total Loss vs Average Loss

The objective functions

J(w) =

n∑
i=1

(wT xi − yi )
2

J1(w) =
1
n

n∑
i=1

(wT xi − yi )
2

have the same minimizer w∗.
But they have different minimum values.
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Lasso: Coordinate Descent vs SGD

SGD For Total Loss vs Average Loss

The objective functions

J(w) =

n∑
i=1

(wT xi − yi )
2+λ‖w‖2

J1(w) =
1
n

n∑
i=1

(wT xi − yi )
2+λ‖w‖2

do not have the same minimizer w∗ for the same λ.
For the same λ, which objective has the minimizer with smaller
“complexity” ‖w‖2?
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Directional Derivatives and Minima

Directional Derivatives

Definition
A directional derivative of f at x in the direction δx is

f ′(x ;δx) = lim
h↓0

f (x +hδx)− f (x)

h
,

and it can be ±∞ (e.g. for discontinuous functions).

If f is convex and finite near x , then f ′(x ;δx) exists.
f is differentiable at x iff for some g(=∇f (x)) and all δx ,

f ′(x ;δx) = gTδx .

Boyd EE364b: Subgradients Slides
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Directional Derivatives and Minima

Descent Directions and Optimality

Definition
δx is a descent direction for f at x if f ′(x ;δx)< 0.

For differentiable f , if ∇f (x) 6= 0, then δx =−∇f (x) is a descent
direction.
We have a nice characterization for a minimum in terms of directional
derivative:

Theorem
If f is convex and finite near x , then either

x minimizes f , or
there is a descent direction for f at x .

Boyd EE364b: Subgradients Slides
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Directional Derivatives and Minima

λmax for Lasso

Lasso objective

Jλ(w) =

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Is there a λmax such that λ> λmax implies argminw Jλ(w) = 0?

Suppose yes.

Then w = 0 is a minimum of Jλ(w).

Let’s see what that means in terms of our directional derivative
characterization.
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Directional Derivatives and Minima

Directional Derivative for Lasso

Consider a step direction v . For convenience, take v s.t. |v |= 1.

Then directional derivative at w = 0 in direction v is

J ′λ(0;v) = lim
h↓0

J(hv)−J(0)
h

.

For w = 0 to be a minimizer, need to have J ′λ(0;v)> 0 for every
direction v .

Can find λmax by finding conditions on λ for this to be the case.
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