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Regression Trees

General Tree Structure

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Regression Trees

Decision Tree

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Regression Trees

Binary Decision Tree on R2

Consider a binary tree on {(X1,X2) | X1,X2 ∈ R}

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Binary Regression Tree on R2

Consider a binary tree on {(X1,X2) | X1,X2 ∈ R}

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
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Regression Trees

Fitting a Regression Tree

The decision tree gives the partition of X into regions:

{R1, . . . ,RM } .

Recall that a partition is a disjoint union, that is:

X= R1∪R2∪·· ·∪RM

and
Ri ∩Rj = ∅ ∀i 6= j
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Regression Trees

Fitting a Regression Tree

Given the partition {R1, . . . ,RM }, final prediction is

f (x) =
M∑

m=1

cm1(x ∈ Rm)

How to choose c1, . . . ,cM?
For loss function `(ŷ ,y) = (ŷ − y)2, best is

ĉm = ave(yi | xi ∈ Rm).
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Regression Trees

Complexity of a Tree

Let |T |=M denote the number of terminal nodes in T .
We will use |T | to measure the complexity of a tree.
For any given complexity,

we want the tree minimizing square error on training set.

Finding the optimal binary tree of a given complexity is
computationally intractable.
We proceed with a greedy algorithm

Means build the tree one node at a time, without any planning ahead.
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Regression Trees

Root Node, Continuous Variables

Let x = (x1, . . . ,xd) ∈ Rd .
Splitting variable j ∈ {1, . . . ,d}.
Split point s ∈ R.
Partition based on j and s:

R1(j ,s) = {x | xj 6 s}

R2(j ,s) = {x | xj > s}
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Regression Trees

Root Node, Continuous Variables

For each splitting variable j and split point s,

ĉ1 = ave(yi | xi ∈ R1)

ĉ2 = ave(yi | xi ∈ R2)

Find j ,s minimizing∑
i :xi∈R1(j ,s)

(yi − ĉ1(j ,s))
2+

∑
i :xi∈R2(j ,s)

(yi − ĉ2(j ,s))
2
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Regression Trees

Then Proceed Recursively

1 We have determined R1 and R2

2 Find best split for points in R1

3 Find best split for points in R2

4 Continue...

When do we stop?
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Regression Trees

Complexity Control Strategy

If the tree is too big, we may overfit.
If too small, we may miss patterns in the data (underfit).
Typical approach:

1 Build a really big tree (e.g. until all regions have 6 5 points).
2 Prune the tree.
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Regression Trees

Tree Terminology

Each internal node
has a splitting variable and a split point
corresponds to binary partition of the space

A terminal node or leaf node
corresponds to a region
corresponds to a particular prediction

A subtree T ⊂ T0 is any tree obtained by pruning T0, which means
collapsing any number of its internal nodes.
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Regression Trees

Tree Pruning

Full Tree T0

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Tree Pruning

Subtree T ⊂ T0

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Emprical Risk and Tree Complexity

Suppose we want to prune a big tree T0.

Let R̂(T ) be the empirical risk of T (i.e. square error on training)

Clearly, for any T ⊂ T0, R̂(T )> R̂(T0).

Let |T | be the number of terminal nodes in T .
|T | is our measure of complexity for a tree.
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Regression Trees

Cost Complexity (or Weakest Link) Pruning

Definitions
The cost complexity criterion with parameter α is

Cα(T ) = R̂(T )+α |T |

Trades off between empirical risk and complexity of tree.

Cost complexity pruning:

For each α, find the tree T ⊂ T0 minimizing Cα(T ).
Use cross validation to find the right choice of α.
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Regression Trees

Greedy Pruning is Sufficient

Find subtree T1 ⊂ T0 that minimizes R̂(T1)− R̂(T0).
Then find T2 ⊂ T1.
Repeat until we have just a single node.
If N is the number of nodes of T0 (terminal and internal nodes), then
we end up with a set of trees:

T =
{
T0 ⊃ T1 ⊃ T2 ⊃ ·· · ⊃ T|N|

}
Breiman et al. (1984) proved that this is all you need. That is:{

argmin
T⊂T0

Cα(T ) | α> 0

}
⊂ T
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Regression Trees

Regularization Path for Trees

HTF Figure 9.4
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Classification Trees

Classification Trees

Consider classification case: Y= {1,2, . . . ,K }.
We need to modify

criteria for splitting nodes
method for pruning tree
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Classification Trees

Classification Trees

Let node m represent region Rm, with Nm observations
Denote proportion of observations in Rm with class k by

p̂mk =
1
m

∑
{i :xi∈Rm}

1(yi = k).

Predicted classification for node m is

k(m) = argmax
k

p̂mk .

Predicted class probability distribution is (p̂m1, . . . , p̂mK ).
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Classification Trees

Misclassification Error

Consider node m representing region Rm, with Nm observations
Suppose we predict

k(m) = argmax
k

p̂mk

as the class for all inputs in region Rm.
What is the misclassification rate on the training data?
It’s just

1− p̂mk(m).
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Classification Trees

Classification Trees: Node Impurity Measures

Consider node m representing region Rm, with Nm observations
How can we generalize from squared error to classification?
We will introduce some different measures of node impurity.

We want pure leaf nodes (i.e. as close to a single class as possible)

We’ll find splitting variables and split point minimizing node
impurity.
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Classification Trees

Two-Class Node Impurity Measures

Consider binary classification
Let p be the relative frequency of class 1.
Here are three node impurity measures as a function of p

HTF Figure 9.3
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Classification Trees

Classification Trees: Node Impurity Measures

Consider leaf node m representing region Rm, with Nm observations
Three measures Qm(T ) of node impurity for leaf node m:

Misclassification error:
1− p̂mk(m).

Gini index:
K∑

k=1

p̂mk(1− p̂mk)

Entropy or deviance:

−

K∑
k=1

p̂mk log p̂mk .
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Classification Trees

Class Distributions: Pre-split

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Classification Trees

Class Distributions: Split Search

(Maximizing information gain is equivalent to minimizing entropy)

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Classification Trees

Classification Trees: How exactly do we do this?

Let RL and RR be regions corresponding to a potential node split.
Suppose we have NL points in RL and NR points in RR .
Let Q(RL) and Q(RR) be the node impurity measures.
The we search for a split that minimizes

NLQ(RL)+NRQ(RR)
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Classification Trees

Classification Trees: Node Impurity Measures

For building the tree, Gini and Entropy are more effective.

They push for more pure nodes, not just misclassification rate

For pruning the tree, use misclassification error – closer to risk
estimate.
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Trees in General

Missing Features (or “Predictors”)

Features are also called covariates or predictors.
What to do about missing features?

Throw out inputs with missing features
Impute missing values with feature means
If a categorical feature, let “missing” be a new category.

For trees, can use surrogate splits
For every internal node, form a list of surrogate features and split points
Goal is to approximate the original split as well as possible
Surrogates ordered by how well they approximate the original split.
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Trees in General

Categorical Features

Suppose we have feature with q possible values (unordered).
We want to find the best split into 2 groups
There are 2q−1−1 possible partitions.
Search time?

For binary classification (K = 2), there is an efficient algorithm.
(Breiman 1984)
Otherwise, can use approximations.

Statistical issue?

If a category has a very large number of categories, we can overfit.
Extreme example: Row Number could lead to perfect classification
with a single split.
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Trees in General

Trees vs Linear Models

Trees have to work much harder to capture linear relations.
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Trees in General

Interpretability

Trees are certainly easy to explain.
You can show a tree on a slide.
Small trees seem interpretable.
For large trees, maybe not so easy.

David Rosenberg (New York University) DS-GA 1003 February 28, 2015 33 / 36



Trees in General

Trees for Nonlinear Feature Discovery

Suppose tree T gives partition R1, . . . ,Rm.
Predictions are

f (x) =
M∑

m=1

cm1(x ∈ Rm)

If we make a feature for every region R :

1(x ∈ R),

we can view this as a linear model.
Trees can be used to discover nonlinear features.
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Trees in General

Instability / High Variance of Trees

Trees are high variance:
If we randomly split the data, we may get quite different trees from
each part

By contrast, linear models have low variance (at least when
well-regularized)

Later we investigate several ways to reduce this variance
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Trees in General

Comments about Trees

Trees make no use of geometry
No inner products or distances
called a “nonmetric” method
Feature scale irrelevant

Predictions are not continuous

not so bad for classification
may not be desirable for regression
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