Classification and Regression Trees

David Rosenberg

New York University

February 28, 2015
General Tree Structure

A general tree structure

internal (split) node

root node

terminal (leaf) node

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
Decision Tree

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
Consider a binary tree on \(\{(X_1, X_2) \mid X_1, X_2 \in \mathbb{R}\} \)
Consider a binary tree on \(\{ (X_1, X_2) \mid X_1, X_2 \in \mathbb{R} \} \)
Fitting a Regression Tree

The decision tree gives the partition of \mathcal{X} into regions:

$$\{R_1, \ldots, R_M\}.$$

Recall that a partition is a disjoint union, that is:

$$\mathcal{X} = R_1 \cup R_2 \cup \cdots \cup R_M$$

and

$$R_i \cap R_j = \emptyset \quad \forall i \neq j$$
Fitting a Regression Tree

- Given the partition \(\{ R_1, \ldots, R_M \} \), final prediction is

\[
f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)
\]

- How to choose \(c_1, \ldots, c_M \)?
- For loss function \(\ell(\hat{y}, y) = (\hat{y} - y)^2 \), best is

\[
\hat{c}_m = \text{ave}(y_i \mid x_i \in R_m).
\]
Complexity of a Tree

- Let $|T| = M$ denote the number of terminal nodes in T.
- We will use $|T|$ to measure the complexity of a tree.
- For any given complexity,
 - we want the tree minimizing square error on training set.
- Finding the optimal binary tree of a given complexity is computationally intractable.
- We proceed with a greedy algorithm
 - Means build the tree one node at a time, without any planning ahead.
Root Node, Continuous Variables

- Let $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$.
- **Splitting variable** $j \in \{1, \ldots, d\}$.
- **Split point** $s \in \mathbb{R}$.
- Partition based on j and s:

 $$R_1(j, s) = \{x \mid x_j \leq s\}$$

 $$R_2(j, s) = \{x \mid x_j > s\}$$
For each splitting variable j and split point s,

\[\hat{c}_1 = \text{ave}(y_i \mid x_i \in R_1) \]
\[\hat{c}_2 = \text{ave}(y_i \mid x_i \in R_2) \]

Find j, s minimizing

\[\sum_{i : x_i \in R_1(j,s)} (y_i - \hat{c}_1(j,s))^2 + \sum_{i : x_i \in R_2(j,s)} (y_i - \hat{c}_2(j,s))^2 \]
Then Proceed Recursively

1. We have determined R_1 and R_2
2. Find best split for points in R_1
3. Find best split for points in R_2
4. Continue...

- When do we stop?
Complexity Control Strategy

- If the tree is too big, we may overfit.
- If too small, we may miss patterns in the data (underfit).
- Typical approach:
 1. Build a really big tree (e.g. until all regions have \(\leq 5 \) points).
 2. Prune the tree.
Tree Terminology

- Each **internal node**
 - has a splitting variable and a split point
 - corresponds to binary partition of the space

- A **terminal node** or **leaf node**
 - corresponds to a region
 - corresponds to a particular prediction

- A **subtree** $T \subset T_0$ is any tree obtained by **pruning** T_0, which means collapsing any number of its internal nodes.
Tree Pruning

- Full Tree T_0

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Tree Pruning

Subtree $T \subset T_0$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Suppose we want to prune a big tree T_0.

Let $\hat{R}(T)$ be the empirical risk of T (i.e. square error on training).

Clearly, for any $T \subset T_0$, $\hat{R}(T) \geq \hat{R}(T_0)$.

Let $|T|$ be the number of terminal nodes in T.

$|T|$ is our measure of complexity for a tree.
Cost Complexity (or Weakest Link) Pruning

Definitions

The **cost complexity criterion** with parameter α is

$$ C_\alpha(T) = \hat{R}(T) + \alpha |T| $$

- Trades off between empirical risk and complexity of tree.
- Cost complexity pruning:
 - For each α, find the tree $T \subset T_0$ minimizing $C_\alpha(T)$.
 - Use cross validation to find the right choice of α.
Greedy Pruning is Sufficient

- Find subtree $T_1 \subset T_0$ that minimizes $\hat{R}(T_1) - \hat{R}(T_0)$.
- Then find $T_2 \subset T_1$.
- Repeat until we have just a single node.
- If N is the number of nodes of T_0 (terminal and internal nodes), then we end up with a set of trees:

$$\mathcal{T} = \{ T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_{|N|} \}$$

- Breiman et al. (1984) proved that this is all you need. That is:

$$\left\{ \arg \min_{T \subset T_0} C_\alpha(T) \mid \alpha \geq 0 \right\} \subset \mathcal{T}$$
Regularization Path for Trees
Consider classification case: $\mathcal{Y} = \{1, 2, \ldots, K\}$.

We need to modify

- criteria for splitting nodes
- method for pruning tree
Classification Trees

- Let node m represent region R_m, with N_m observations.
- Denote proportion of observations in R_m with class k by

$$\hat{p}_{mk} = \frac{1}{m} \sum_{\{i : x_i \in R_m\}} 1(y_i = k).$$

- Predicted classification for node m is

$$k(m) = \arg \max_k \hat{p}_{mk}.$$

- Predicted class probability distribution is $(\hat{p}_{m1}, \ldots, \hat{p}_{mK})$.
Consider node m representing region R_m, with N_m observations.

Suppose we predict

$$k(m) = \arg \max_k \hat{p}_{mk}$$

as the class for all inputs in region R_m.

What is the misclassification rate on the training data?

It’s just

$$1 - \hat{p}_{mk}(m).$$
Consider node m representing region R_m, with N_m observations.

How can we generalize from squared error to classification?

We will introduce some different measures of node impurity.

- We want pure leaf nodes (i.e. as close to a single class as possible).

- We'll find splitting variables and split point minimizing node impurity.
Two-Class Node Impurity Measures

- Consider binary classification
- Let p be the relative frequency of class 1.
- Here are three node impurity measures as a function of p
Classification Trees: Node Impurity Measures

- Consider leaf node m representing region R_m, with N_m observations
- Three measures $Q_m(T)$ of **node impurity** for leaf node m:
 - Misclassification error:
 $$1 - \hat{p}_{mk}(m).$$
 - Gini index:
 $$\sum_{k=1}^{K} \hat{p}_{mk}(1 - \hat{p}_{mk}).$$
 - Entropy or deviance:
 $$- \sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}.$$
Class Distributions: Pre-split

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
Class Distributions: Split Search

(Maximizing information gain is equivalent to minimizing entropy)

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
Let R_L and R_R be regions corresponding to a potential node split. Suppose we have N_L points in R_L and N_R points in R_R. Let $Q(R_L)$ and $Q(R_R)$ be the node impurity measures. The we search for a split that minimizes

$$N_L Q(R_L) + N_R Q(R_R)$$
Classification Trees: Node Impurity Measures

- For building the tree, Gini and Entropy are more effective.
 - They push for more pure nodes, not just misclassification rate
- For pruning the tree, use misclassification error – closer to risk estimate.
Missing Features (or “Predictors”)

- Features are also called covariates or predictors.
- What to do about missing features?
 - Throw out inputs with missing features
 - Impute missing values with feature means
 - If a categorical feature, let “missing” be a new category.

- For trees, can use surrogate splits
 - For every internal node, form a list of surrogate features and split points
 - Goal is to approximate the original split as well as possible
 - Surrogates ordered by how well they approximate the original split.
Categorical Features

- Suppose we have feature with \(q \) possible values (unordered).
- We want to find the best split into 2 groups
- There are \(2^{q-1} - 1 \) possible partitions.
- Search time?
 - For binary classification (\(K = 2 \)), there is an efficient algorithm. (Breiman 1984)
 - Otherwise, can use approximations.
- Statistical issue?
 - If a category has a very large number of categories, we can overfit.
 - Extreme example: Row Number could lead to perfect classification with a single split.
Trees vs Linear Models

- Trees have to work much harder to capture linear relations.

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Interpretability

- Trees are certainly easy to explain.
- You can show a tree on a slide.
- Small trees seem interpretable.
- For large trees, maybe not so easy.
Trees for Nonlinear Feature Discovery

- Suppose tree T gives partition R_1, \ldots, R_m.
- Predictions are
 \[
 f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)
 \]
- If we make a feature for every region R:
 \[
 1(x \in R),
 \]
 we can view this as a **linear model**.
- Trees can be used to discover nonlinear features.
Instability / High Variance of Trees

- Trees are **high variance**:
 - If we randomly split the data, we may get quite different trees from each part
- By contrast, linear models have low variance (at least when well-regularized)
- Later we investigate several ways to reduce this variance
Trees in General

Comments about Trees

- Trees make no use of **geometry**
 - No inner products or distances
 - called a “nonmetric” method
 - **Feature scale irrelevant**
- Predictions are not continuous
 - not so bad for classification
 - may not be desirable for regression