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Regression Trees

General Tree Structure

A general tree structure
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(split) node
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From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Regression Trees

Decision Tree

A decision tree
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From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Regression Trees

Binary Decision Tree on R?

o Consider a binary tree on {(X1, X5) | X1, X> € R}

X<t
]

Xz
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R’ Ry R3 R,

Ry Rs X1

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Binary Regression Tree on R?

o Consider a binary tree on {( X1, X5) | X1, X> € R}




Fitting a Regression Tree

@ The decision tree gives the partition of X into regions:
{R1,....Rm}.
@ Recall that a partition is a disjoint union, that is:
X=RiURU---URpm

and
RiNRj=0 Vi#j
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Fitting a Regression Tree

@ Given the partition {Ry, ..., Ry}, final prediction is

M
f(x)= Z cml(x € Ry)
m=1

@ How to choose c¢1,...,cm?

A

@ For loss function £(y,y) = (y—y)z, best is

Cm =ave(y; | x; € Rm).
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Complexity of a Tree

@ Let |T| = M denote the number of terminal nodes in T.
@ We will use | T| to measure the complexity of a tree.
e For any given complexity,
e we want the tree minimizing square error on training set.
e Finding the optimal binary tree of a given complexity is
computationally intractable.
@ We proceed with a greedy algorithm

e Means build the tree one node at a time, without any planning ahead.
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Regression Trees

Root Node, Continuous Variables

Let x = (x1,...,x4) € RY.
Splitting variable j €{1,...,d}.
Split point s € R.

Partition based on j and s:

Ruljs) = (x| <s)
Rolj,s) = (x| > s}
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Regression Trees

Root Node, Continuous Variables

@ For each splitting variable j and split point s,
& = avelyi|xi € Ri)
& = avelyi|xi € Rp)
e Find j, s minimizing

> i—albe))?’+ ) (i—als)?

ix;€RL(J,s) ix;€R2(j,s)
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Regression Trees

Then Proceed Recursively

@ We have determined R; and R»
@ Find best split for points in Ry
© Find best split for points in R
Q@ Continue...

@ When do we stop?
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Complexity Control Strategy

o If the tree is too big, we may overfit.
@ If too small, we may miss patterns in the data (underfit).
@ Typical approach:

@ Build a really big tree (e.g. until all regions have <5 points).
@ Prune the tree.
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Regression Trees

Tree Terminology

e Each internal node

e has a splitting variable and a split point
e corresponds to binary partition of the space

e A terminal node or leaf node

e corresponds to a region
e corresponds to a particular prediction

@ A subtree T C Ty is any tree obtained by pruning Ty, which means
collapsing any number of its internal nodes.
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Tree Pruning

o Full Tree Ty

Yoars,< 45
His 1175
Years|< 35
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Tree Pruning

@ Subtree T C Ty
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T
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Emprical Risk and Tree Complexity

@ Suppose we want to prune a big tree Ty.

Let R(T) be the empirical risk of T (i.e. square error on training)

A A

Clearly, for any T C Ty, R(T) = R(Typ).

Let | T| be the number of terminal nodes in T.

| T| is our measure of complexity for a tree.
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Cost Complexity (or Weakest Link) Pruning

Definitions

The cost complexity criterion with parameter « is

CoalT)=R(T)+ T

@ Trades off between empirical risk and complexity of tree.

o Cost complexity pruning:

e For each «, find the tree T C Ty minimizing Co (T).
e Use cross validation to find the right choice of «.
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Greedy Pruning is Sufficient

Find subtree T; C Ty that minimizes I%(Tl)—li’(To).
Then find T, C T3.

Repeat until we have just a single node.

If N is the number of nodes of Ty (terminal and internal nodes), then
we end up with a set of trees:

T={ToD>TiD>TD> DTy}

@ Breiman et al. (1984) proved that this is all you need. That is:

{argmin Co(T) x> 0} cT
TCTo
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Regression Trees

Regularization Path for Trees
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Classification Trees

Classification Trees

e Consider classification case: Y={1,2,...,K}.
@ We need to modify

o criteria for splitting nodes
e method for pruning tree
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Classification Trees

Classification Trees

Let node m represent region Rp,, with N, observations

Denote proportion of observations in R, with class k by

. 1
pmk:; Z 1()/l:k)
{i:XfeRm}

Predicted classification for node m is

k(m) = argmax pm.
k

@ Predicted class probability distribution is (pm1, ..., Pmk)-
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Classification Trees

Misclassification Error

o Consider node m representing region Rp,, with N, observations

@ Suppose we predict
k(m) = argmax Pk
K

as the class for all inputs in region Ry,.
@ What is the misclassification rate on the training data?
@ It's just
1—Pmk(m)-
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Classification Trees

Classification Trees: Node Impurity Measures

o Consider node m representing region R, with N, observations
@ How can we generalize from squared error to classification?
@ We will introduce some different measures of node impurity.
o We want pure leaf nodes (i.e. as close to a single class as possible)

o We'll find splitting variables and split point minimizing node
impurity.
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Two-Class Node Impurity Measures
@ Consider binary classification

o Let p be the relative frequency of class 1.
@ Here are three node impurity measures as a function of p

0
o

0.0 0.2 0.4 0.6 0.8 1.0

HTF Figure 9.3
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Classification Trees

Classification Trees: Node Impurity Measures

o Consider leaf node m representing region Rp,, with N, observations
@ Three measures Qm,(T) of node impurity for leaf node m:
e Misclassification error:
1_ﬁmk(m)'
e Gini index:
K
Zﬁmk(l_ﬁmk)
k=1

e Entropy or deviance:
K

- Z ﬁmk IOg ﬁmk-
k=1
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Classification Trees

Class Distributions: Pre-split

data before split
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@ Before split

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Class Distributions: Split Search
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e (Maximizing information gain is equivalent to minimizing entropy)

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Classification Trees

Classification Trees: How exactly do we do this?

Let R, and Rg be regions corresponding to a potential node split.
Suppose we have N; points in R; and Ng points in Rg.
Let Q(R.) and Q(RRr) be the node impurity measures.

The we search for a split that minimizes

N Q(RL)+ NrQ(RR)
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Classification Trees

Classification Trees: Node Impurity Measures

@ For building the tree, Gini and Entropy are more effective.

e They push for more pure nodes, not just misclassification rate

@ For pruning the tree, use misclassification error — closer to risk
estimate.
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Trees in General

Missing Features (or “Predictors’)

@ Features are also called covariates or predictors.
@ What to do about missing features?

e Throw out inputs with missing features
o Impute missing values with feature means
o If a categorical feature, let “missing” be a new category.

@ For trees, can use surrogate splits

o For every internal node, form a list of surrogate features and split points
o Goal is to approximate the original split as well as possible
e Surrogates ordered by how well they approximate the original split.
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Trees in General

Categorical Features

@ Suppose we have feature with g possible values (unordered).
@ We want to find the best split into 2 groups

@ There are 2971 —1 possible partitions.

@ Search time?

e For binary classification (K = 2), there is an efficient algorithm.
(Breiman 1984)
o Otherwise, can use approximations.

Statistical issue?

o If a category has a very large number of categories, we can overfit.
o Extreme example: Row Number could lead to perfect classification
with a single split.
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Trees in General

Trees vs Linear Models

@ Trees have to work much harder to capture linear relations.

X e - X o -
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-2 -1 0 1 2 -2 -1 0 1 2
Xy Xy
X o= X o -
T - T -
! T T T T T ! T T T T
2 a0 1 2 2 a0 1 2
Xy Xy

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Interpretability

@ Trees are certainly easy to explain.
@ You can show a tree on a slide.
@ Small trees seem interpretable.

@ For large trees, maybe not so easy.
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Trees in General

Trees for Nonlinear Feature Discovery

@ Suppose tree T gives partition Ry, ..., Ry.

@ Predictions are

M
f(x)=) cml(x € Rp)
m=1

o If we make a feature for every region R:
1(xeR),

we can view this as a linear model.

@ Trees can be used to discover nonlinear features.
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Instability / High Variance of Trees

@ Trees are high variance:

o If we randomly split the data, we may get quite different trees from
each part

@ By contrast, linear models have low variance (at least when
well-regularized)

o Later we investigate several ways to reduce this variance
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Trees in General

Comments about Trees

@ Trees make no use of geometry

e No inner products or distances
o called a “honmetric” method
o Feature scale irrelevant

@ Predictions are not continuous

e not so bad for classification
e may not be desirable for regression

David Rosenberg (New York University)| DS-GA 1003 February 28, 2015

36 / 36



	Regression Trees
	Classification Trees
	Trees in General

