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Bias and Variance

Approximation Error and Estimation Error

Recall the excess risk decomosition for any f ∈ F:

Excess Risk(f ) = R(f )−R(f ∗F)︸ ︷︷ ︸
estimation error

+ R(f ∗F)−R(f ∗)︸ ︷︷ ︸
approximation error

Restricting the hypothesis space F

leads to approximation error
but helps to reduce estimation error (i.e. f̂ is closer to f ∗F).

Now, we’ll switch to the bias/variance terminology more common
when discussing the topics of this lecture.
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Bias and Variance

Bias and Variance

Restricting the hypothesis space F “biases” the fit

towards a simpler model and
away from the best possible fit of the training data.

Full, unpruned decision trees have very little bias.
Pruning decision trees introduces a bias.
Variance describes how much the fit changes across different random
training sets.
Decision trees are found to be high variance.
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Bias and Variance

Bias and Variance for Square Loss

Input space X

Output space Y

(X ,Y ) ∼ PX×Y

From Homework #1, recall that for square loss, the bayes prediction
function is

f ∗(x) = E [Y | X = x ]

Let’s consider a prediction function f̂ trained on a random set of data.
f̂ is random because training data is random.
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Bias and Variance

Excess Risk for Square Error

Excess risk of f ∈ F, conditional on X = x :

ExcessRisk(f | X = x) = E
[
(Y − f (x))2 | X = x

]
︸ ︷︷ ︸

Risk of f

−E
[
(Y − f ∗(x))2 | X = x

]
︸ ︷︷ ︸

Risk of f ∗

Can show
ExcessRisk(f | X = x) = (f (x)− f ∗(x))2 .

In words: excess risk at x is the square difference between the
prediction and the Bayes prediction.
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Bias and Variance

Random Training Data =⇒ Random Prediction Function

A learning algorithm produces f̂ based on training data.
The training data is a random sample from PX×Y.
Since the training data is random, so is f̂ .
Thus for any fixed x , the prediction f̂ (x) is a random variable.
As a random variable, f̂ (x) has an expectation and variance.
As an estimator of f ∗(x), f̂ (x) may have a bias.
We now compute these things.
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Bias and Variance

Bias-Variance Decomposition for Excess Risk

Prediction f̂ (x) for any fixed input x has bias and variance:

Bias(f̂ (x)) = E
[
f̂ (x)

]
− f ∗(x)

Var
(
f̂ (x)

)
= E

[(
f̂ (x)−E

[
f̂ (x)

])2
]

where the expectations are taken over the training data.
Can show bias-variance decomposition for excess risk at x :

E
[(

f̂ (x)− f ∗(x)
)2
]

=
[
Bias(f̂ (x))

]2
+Var

(
f̂ (x)

)
Could we reduce variance without increasing bias?
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Bias and Variance

Variance of a Mean

Let Z1, . . . ,Zn be independent r.v’s with mean µ and variance σ2.
Suppose we want to estimate µ.
We could use any single Zi to estimate µ.
Variance of estimate would be σ2.
Let’s consider the average of the Zi ’s.
Average has the same expected value but smaller variance:

E

[
1
n

n∑
i=1

Zi

]
= µ Var

[
1
n

n∑
i=1

Zi

]
=

σ2

n
.

Can we apply this to reduce variance of prediction models?
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Bias and Variance

Averaging Independent Prediction Functions

Suppose we have B independent training sets.
Let f̂1(x), f̂2(x), . . . , f̂B(x) be the prediction models for each set.
Define the average prediction function as:

f̂avg(x) =
1
B

B∑
b=1

f̂b(x).

The average prediction function has lower variance than an individual
prediction function.
But in practice we don’t have B independent training sets...
Instead, we can use the bootstrap.... next lecture.
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