Bagging and Random Forests

David Rosenberg

New York University

March 4, 2015
Variance of a Mean

- Let Z_1, \ldots, Z_n be independent r.v’s with mean μ and variance σ^2.
- Suppose we want to estimate μ.
- We could use any single Z_i to estimate μ.
- Variance of estimate would be σ^2.
- Let’s consider the average of the Z_i’s.
- Average has the same expected value but smaller variance:

$$
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \mu \quad \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \frac{\sigma^2}{n}.
$$

- Can we apply this to reduce variance of prediction models?
Averaging Independent Prediction Functions

- Suppose we have B independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \ldots, \hat{f}_B(x)$ be the prediction models for each set.
- Define the average prediction function as:

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).$$

- The average prediction function has lower variance than an individual prediction function.
- But in practice we don’t have B independent training sets...
- Instead, we can use the bootstrap....
Variability of an Estimator

Suppose we have a random sample X_1, \ldots, X_n.
Compute some function of the data, such as

$$\hat{\mu} = \phi(X_1, \ldots, X_n).$$

We want to put error bars on $\hat{\mu}$, so we need to estimate $\text{Var}(\hat{\mu})$.

Ideal scenario:
- Attain B samples of size n.
- Compute $\hat{\mu}_1, \ldots, \hat{\mu}_B$.
- The sample variance of $\hat{\mu}_1, \ldots, \hat{\mu}_B$ estimates $\text{Var}(\hat{\mu})$

Again, we don’t have B samples. Only 1.
The Bootstrap Sample

Definition

A bootstrap sample from $\mathcal{D} = \{X_1, \ldots, X_n\}$ is a sample of size n drawn with replacement from \mathcal{D}.

- In a bootstrap sample, some elements of \mathcal{D}
 - will show up multiple times,
 - some won’t show up at all.
- Each X_i has a probability $(1 - 1/n)^n$ of not being selected.
- Recall from analysis that for large n,
 \[
 \left(1 - \frac{1}{n}\right)^n \approx \frac{1}{e} \approx .368.
 \]
 - So we expect $\sim 63.2\%$ of elements of \mathcal{D} will show up at least once.
The Bootstrap Sample

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
The Bootstrap Method

Definition

A **bootstrap method** is when you *simulate* having B independent samples by taking B bootstrap samples from the sample \mathcal{D}.

- Given original data \mathcal{D}, compute B bootstrap samples D^1, \ldots, D^B.
- For each bootstrap sample, compute some function
 \[\phi(D^1), \ldots, \phi(D^B) \]
- Work with these values as though D^1, \ldots, D^B were independent.
- **Amazing fact:** Things usually come out very close to what we’d get with independent samples.
Independent vs Bootstrap Samples

- Original sample size $n = 100$ (simulated data)
- $\hat{\alpha}$ is a complicated function of the data.
- Compare values of $\hat{\alpha}$ on
 - 1000 independent samples of size 100, vs
 - 1000 bootstrap samples of size 100

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Bagging

- Suppose we had B independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \ldots, \hat{f}_B(x)$ be the prediction models from each set.
- Define the average prediction function as:
 \[
 \hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).
 \]
- But we don't have B independent training sets.
- **Bagging** is when we use B bootstrap samples as training sets.
- Bagging estimator given as
 \[
 \hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b^*(x),
 \]
 where \hat{f}_b^* is trained on the b'th bootstrap sample.
- Bagging proposed by Leo Breiman (1996).
Out-of-Bag Error Estimation

- Each bagged predictor is trained on about 63% of the data.
- Remaining 37% are called out-of-bag (OOB) observations.
- For ith training point, let

 $$ S_i = \{ b \mid D^b \text{ does not contain } i\text{th point} \}. $$

- The OOB prediction on x_i is

 $$ \hat{f}_{OOB}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b^*(x). $$

- The OOB error is a good estimate of the test error.
- For large enough B, OOB error is like cross validation.
Bagging Trees

- Input space $\mathcal{X} = \mathbb{R}^5$ and output space $\mathcal{Y} = \{-1, 1\}$.
- Sample size $N = 30$ (simulated data)

From ESL Figure 8.9
Bagging Trees

- Two ways to combine classifications: consensus class or average probabilities.

From ESL Figure 8.10
Variance of a Mean of Correlated Variables

- For Z, Z_1, \ldots, Z_n i.i.d. with $\mathbb{E} Z = \mu$ and $\text{Var} Z = \sigma^2$,
 \[
 \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \mu \quad \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \frac{\sigma^2}{n}.
 \]

- What if Z's are correlated?
 - Suppose $\forall i \neq j$, $\text{Corr}(Z_i, Z_j) = \rho$. Then
 \[
 \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \rho \sigma^2 + \frac{1-\rho}{n} \sigma^2.
 \]

- For large n, the $\rho \sigma^2$ term dominates – limits benefit of averaging.
Main idea of random forests

Use **bagged decision trees**, but modify the tree-growing procedure to reduce the correlation between trees.

- **Key step** in random forests:
 - When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size m.
 - Typically choose $m \approx \sqrt{p}$, where p is the number of features.
 - Can choose m using cross validation.
Random Forest: Effect of m size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Random Forest: Effect of m size

See movie in Criminisi et al’s PowerPoint: