
Gradient Boosting

David Rosenberg

New York University

March 11, 2015

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 1 / 14



Boosting Fits an Additive Model

Adaptive Basis Function Model

AdaBoost produces a classification score function of the form

M∑
m=1

αmGm(x)

each Gm is a weak classifier

The Gm’s are like basis functions, but they are learned from the data.
Let’s move beyond classification models...
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Boosting Fits an Additive Model

Adaptive Basis Function Model

Hypothesis space F

Can be classifiers or regression functions
These would be the “weak classifiers” or “base classifiers”

An adaptive basis function expansion over F is

f (x) =
M∑

m=1

νmhm(x),

Each hm ∈ F is chosen in a learning process, and
νm are expansion coefficients.

For example, F could be all decision trees of depth at most 4.
We now discuss one approach to fitting such a model.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 3 / 14



Boosting Fits an Additive Model

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(νm,hm) = argmin
ν∈R,h∈F

n∑
i=1

`

yi , fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm(x) = fm−1(x)+νmh(x).

3 Return: fM(x).
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Boosting Fits an Additive Model

Exponential Loss and AdaBoost

Take loss function to be

`(y , f (x)) = exp(−yf (x)) .

Let F = {h(x) : X→ {−1,1}} be a hypothesis space of weak classifiers.
Then Forward Stagewise Additive Modeling (FSAM) reduces to
AdaBoost.

(See HTF Section 10.4 for proof.)
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Gradient Boosting

FSAM Looks Like Gradient Descent?

Let’s examine the key step of FSAM a bit more closely:

(νm,hm) = argmin
ν∈R,h∈F

n∑
i=1

`

yi , fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece

 .

This looks like one step of a numerical optimization method:

h(xi ) is like a step direction

This inspires a new approach to boosting.

We can choose hm to be something like a gradient in function space.
Roughly speaking, it will be like the gradient projected onto F.
Leads to a functional gradient descent method.

Note: This will be a new method. AdaBoost will not be a special case.
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Gradient Boosting

Functional Gradient Descent: Main Idea

We want to minimize
n∑

i=1

` {yi , f (xi )} .

Take functional gradient w.r.t. f .
Find function h ∈ F closest to gradient.
Take a step in this “projected gradient” direction h.
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Gradient Boosting

Functional Gradient Descent: Unconstrained Objective

Note that
n∑

i=1

`(yi , f (xi ))

only depends on f at the training points.
Define

f = (f (x1), . . . , f (xn))
T

and write the objective function as

J(f) =
n∑

i=1

`(yi ,fi ) .
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Gradient Boosting

Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

J(f) =
n∑

i=1

`(yi ,fi ) .

The negative gradient step direction at f is

−g =−∇f J(f),

which we can easily calculate.
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Gradient Boosting

Functional Gradient Descent: Projection Step

Unconstrained step direction is

−g =−∇f J(f).

Suppose F is our weak hypothesis space.
Find h ∈ F that is closest to −g at the training points, in the `2 sense:

min
h∈F

n∑
i=1

(−gi −h(xi ))
2 .

This is a least squares regression problem!
F should have real-valued functions.
So the h that best approximates −g is our step direction.
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Gradient Boosting

Functional Gradient Descent: Step Size

Finally, we choose a stepsize.
Option 1 (Line search):

νm = argmin
ν>0

n∑
i=1

` {yi , fm−1(xi )+νhm(xi )} .

Option 2: (Shrinkage parameter)

We consider ν= 1 to be the full gradient step.
Choose a fixed ν ∈ (0,1) – called a shrinkage parameter.
A value of ν= 0.1 is typical – optimize as a hyperparameter .
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Gradient Boosting

The Gradient Boosting Machine

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

gm =

 ∂

∂f (xi )

(
n∑

i=1

` {yi , f (xi )}

)∣∣∣∣∣
f (xi )=fm−1(xi )

n

i=1

2 Fit regression model to −gm:

hm = argmin
h∈F

n∑
i=1

((−gm)i −h(xi ))
2 .

3 Choose fixed step size νm = ν ∈ (0,1], or take

νm = argmin
ν>0

n∑
i=1

` {yi , fm−1(xi )+νhm(xi )} .

4 Take the step:
fm(x) = fm−1(x)+νmhm(x)
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Gradient Boosting

The Gradient Boosting Machine: Recap

Take any differentiable loss function.
Choose a weak hypothesis space for regression.
Choose number of steps (or a stopping criterion).
Choose step size methodology.
Then you’re good to go!
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Gradient Tree Boosting

Gradient Tree Boosting

Common form of gradient boosting machine takes

F = {regression trees of size J} ,

where J is the number of terminal nodes.
J = 2 gives decision stumps
HTF recommends 46 J 6 8.
Software packages:

Gradient tree boosting is implemented by the gbm package for R
as GradientBoostingClassifier and GradientBoostingRegressor in
sklearn

For trees, there are other tweaks on the algorithm one can do

See HTF 10.9-10.12 and
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