Gradient Boosting

David Rosenberg

New York University

March 11, 2015

Adaptive Basis Function Model

• AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- each G_m is a weak classifier
- The G_m 's are like basis functions, but they are learned from the data.
- Let's move beyond classification models...

Adaptive Basis Function Model

- ${\ensuremath{\, \bullet }}$ Hypothesis space ${\ensuremath{\mathcal F}}$
 - Can be classifiers or regression functions
 - These would be the "weak classifiers" or "base classifiers"
- \bullet An adaptive basis function expansion over ${\mathfrak F}$ is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- Each $h_m \in \mathcal{F}$ is chosen in a learning process, and
- v_m are expansion coefficients.
- $\bullet\,$ For example, ${\mathcal F}$ could be all decision trees of depth at most 4.
- We now discuss one approach to fitting such a model.

Forward Stagewise Additive Modeling

- Initialize $f_0(x) = 0$.
- **2** For m = 1 to M:
 - Compute:

$$(\mathbf{v}_m, h_m) = \operatorname*{arg\,min}_{\mathbf{v}\in\mathbf{R}, h\in\mathcal{F}} \sum_{i=1}^n \ell \left\{ y_i, f_{m-1}(x_i) \underbrace{+\mathbf{v}h(x_i)}_{\text{new piece}} \right\}.$$

Exponential Loss and AdaBoost

Take loss function to be

$$\ell(y, f(x)) = \exp\left(-yf(x)\right).$$

• Let $\mathcal{F} = \{h(x) : \mathcal{X} \to \{-1, 1\}\}$ be a hypothesis space of weak classifiers.

- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost.
 - (See HTF Section 10.4 for proof.)

FSAM Looks Like Gradient Descent?

• Let's examine the key step of FSAM a bit more closely:

$$(\mathbf{v}_m, h_m) = \underset{\mathbf{v} \in \mathbf{R}, h \in \mathcal{F}}{\arg\min} \sum_{i=1}^n \ell \left\{ y_i, f_{m-1}(x_i) \underbrace{+ \mathbf{v} h(x_i)}_{\text{new piece}} \right\}.$$

- This looks like one step of a numerical optimization method:
 - $h(x_i)$ is like a step direction
- This inspires a new approach to boosting.
 - We can choose h_m to be something like a gradient in function space.
 - $\bullet\,$ Roughly speaking, it will be like the gradient projected onto $\mathfrak{F}.$
 - Leads to a functional gradient descent method.
- Note: This will be a new method. AdaBoost will not be a special case.

Functional Gradient Descent: Main Idea

• We want to minimize

$$\sum_{i=1}^n \ell\{y_i, f(x_i)\}.$$

- Take functional gradient w.r.t. f.
- Find function $h \in \mathcal{F}$ closest to gradient.
- Take a step in this "projected gradient" direction h.

Functional Gradient Descent: Unconstrained Objective

Note that

$$\sum_{i=1}^n \ell(y_i, f(x_i))$$

only depends on f at the training points.

Define

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^T$$

and write the objective function as

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_{i}, \mathbf{f}_{i}).$$

Functional Gradient Descent: Unconstrained Step Direction

• Consider gradient descent on

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_{i}, \mathbf{f}_{i}).$$

• The negative gradient step direction at f is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}),$$

which we can easily calculate.

Functional Gradient Descent: Projection Step

• Unconstrained step direction is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}).$$

- Suppose \mathcal{F} is our weak hypothesis space.
- Find $h \in \mathcal{F}$ that is closest to $-\mathbf{g}$ at the training points, in the ℓ^2 sense:

$$\min_{h\in\mathcal{F}}\sum_{i=1}^n \left(-\mathbf{g}_i - h(x_i)\right)^2.$$

- This is a least squares regression problem!
- \mathcal{F} should have **real-valued** functions.
- So the *h* that best approximates $-\mathbf{g}$ is our step direction.

Functional Gradient Descent: Step Size

- Finally, we choose a stepsize.
- Option 1 (Line search):

$$\nu_m = \underset{\nu > 0}{\operatorname{arg\,min}} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + \nu h_m(x_i)\}.$$

- Option 2: (Shrinkage parameter)
 - We consider $\nu = 1$ to be the full gradient step.
 - Choose a fixed $\nu \in (0,1)$ called a shrinkage parameter.
 - A value of $\nu=0.1$ is typical optimize as a hyperparameter .

The Gradient Boosting Machine

- Initialize $f_0(x) = 0$.
- **2** For m = 1 to M:
 - Compute:

$$\mathbf{g}_m = \left(\left. \frac{\partial}{\partial f(x_i)} \left(\sum_{i=1}^n \ell\{y_i, f(x_i)\} \right) \right|_{f(x_i) = f_{m-1}(x_i)} \right)_{i=1}^n$$

2 Fit regression model to $-\mathbf{g}_m$:

$$h_m = \operatorname*{arg\,min}_{h \in \mathcal{F}} \sum_{i=1}^n \left((-\mathbf{g}_m)_i - h(x_i) \right)^2.$$

 $\textbf{S} \ \ \text{Choose fixed step size } \nu_m = \nu \in (0,1], \ \text{or take}$

$$\nu_m = \underset{\nu > 0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + \nu h_m(x_i)\}.$$

O Take the step:

$$f_m(x) = f_{m-1}(x) + \nu_m h_m(x)$$

David Rosenberg (New York University)

DS-GA 1003

The Gradient Boosting Machine: Recap

- Take any differentiable loss function.
- Choose a weak hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!

Gradient Tree Boosting

• Common form of gradient boosting machine takes

 $\mathcal{F} = \{ \text{regression trees of size } J \},\$

where J is the number of terminal nodes.

- J = 2 gives decision stumps
- HTF recommends $4 \leq J \leq 8$.
- Software packages:
 - Gradient tree boosting is implemented by the **gbm package** for R
 - as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
- For trees, there are other tweaks on the algorithm one can do
 - See HTF 10.9-10.12 and