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Adaptive Basis Function Model

@ AdaBoost produces a classification score function of the form

M
D o Gm(x)
m=1

e each G,, is a weak classifier

@ The G,,'s are like basis functions, but they are learned from the data.

@ Let's move beyond classification models...
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Adaptive Basis Function Model

@ Hypothesis space F

e Can be classifiers or regression functions
o These would be the “weak classifiers” or “base classifiers”

e An adaptive basis function expansion over  is
M
)= Y Vmhm(x),
m=1

e Each hp, € F is chosen in a learning process, and
e Vv, are expansion coefficients.

@ For example, F could be all decision trees of depth at most 4.
@ We now discuss one approach to fitting such a model.
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Forward Stagewise Additive Modeling

@ Initialize fy(x) =0.
Q@ Form=1to M:
©® Compute:

n
(Vim, hm) = argmin > €3y, fm 1) +vh(x)
VER,hG?iZl Hv—’

new piece

@ Set fiy(x) = frn—1(x) +vmh(x).
© Return: fiy(x).
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Boosting Fits an Additive Model

Exponential Loss and AdaBoost

@ Take loss function to be

Ly, f(x)) =exp(—yf(x)).

o Let F={h(x):X —{—1,1}} be a hypothesis space of weak classifiers.

@ Then Forward Stagewise Additive Modeling (FSAM) reduces to
AdaBoost.

o (See HTF Section 10.4 for proof.)
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FSAM Looks Like Gradient Descent?

@ Let's examine the key step of FSAM a bit more closely:

n

(Vm, hm) = argmin Zf Vi fm—1(x;) +vh(x;)
vERheF | ] —

new piece

@ This looks like one step of a numerical optimization method:
o h(x;) is like a step direction
@ This inspires a new approach to boosting.

e We can choose h,, to be something like a gradient in function space.
o Roughly speaking, it will be like the gradient projected onto &.
o Leads to a functional gradient descent method.

@ Note: This will be a new method. AdaBoost will not be a special case.
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Gradient Boosting

Functional Gradient Descent: Main ldea

@ We want to minimize

> i Fix)
i=1

@ Take functional gradient w.r.t. f.
@ Find function h € F closest to gradient.
@ Take a step in this “projected gradient” direction h.
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Gradient Boosting

Functional Gradient Descent: Unconstrained Objective

@ Note that

n

Dy fx)

i=1
only depends on f at the training points.

@ Define
f=(fxa),....Flxa)) "

and write the objective function as

JF) =) tyf).
i—1
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Gradient Boosting

Functional Gradient Descent: Unconstrained Step Direction

o Consider gradient descent on

JE =) tyf).
i=1
@ The negative gradient step direction at f is

—g=—V¢J(f),

which we can easily calculate.
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Gradient Boosting

Functional Gradient Descent: Projection Step

@ Unconstrained step direction is

—g=—V¢J(f).

Suppose F is our weak hypothesis space.
e Find h € F that is closest to —g at the training points, in the {2 sense:

n

i —gi— h(x;))?.
,rpelgi:l( gi— h(xi))

@ This is a least squares regression problem!
@ T should have real-valued functions.

@ So the h that best approximates —g is our step direction.
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Gradient Boosting

Functional Gradient Descent: Step Size

e Finally, we choose a stepsize.
@ Option 1 (Line search):

n
Vi =argmin > U{y;, fn1(x) +Vhm(x)}.

v>0 i—1

@ Option 2: (Shrinkage parameter)

o We consider v =1 to be the full gradient step.
o Choose a fixed v € (0,1) — called a shrinkage parameter.
o A value of v =0.1 is typical — optimize as a hyperparameter .
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The Gradient Boosting Machine

@ Initialize fy(x) =0.
Q@ Form=1to M:
©® Compute:

a n
8m= m <;€{Yh f(Xi)}>

@ Fit regression model to —gp,:

m—argman Ji—h (x))?.

heF 3

f(XI) fmn— 1(XI) i=1

©® Choose fixed step size v,,, =v € (0,1], or take

Vm —argmmze{y,, m1(5) + Vhm(x)}.

v>0 i—1

@ Take the step:
fm(X) = fm—1(x) +thm(x)
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The Gradient Boosting Machine: Recap

Take any differentiable loss function.

Choose a weak hypothesis space for regression.
Choose number of steps (or a stopping criterion).
Choose step size methodology.

Then you're good to go!
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Gradient Tree Boosting

@ Common form of gradient boosting machine takes
F ={regression trees of size J},

where J is the number of terminal nodes.

J =2 gives decision stumps
HTF recommends 4 < J < 8.

Software packages:

o Gradient tree boosting is implemented by the gbm package for R
@ as GradientBoostingClassifier and GradientBoostingRegressor in
sklearn

For trees, there are other tweaks on the algorithm one can do
e See HTF 10.9-10.12 and
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