
Neural Networks

David Rosenberg

New York University

March 11, 2015

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 1 / 35

Neural Networks Overview

Objectives

What are neural networks?
How do they fit into our toolbox?
When should we consider using them?

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 2 / 35

Neural Networks Overview

Linear Prediction Functions

Linear prediction functions: SVM, ridge regression, Lasso
Generate the feature vector φ(x) by hand.
Learn weight vector w from data. ()

So
score= wTφ(x)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 3 / 35

Neural Networks Overview

Neural Network

Add an extra layer with a nonlinear transformation:

We’ve introduced hidden nodes h1 and h2.

hi = σ
(
vTi φ(x)

)
,

where σ is a nonlinear activation function. (We’ll come back to this.)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 4 / 35

Neural Networks Overview

Neural Network

Score is just

score = w1h1+w2h2

= w1σ(v
T
1 φ(x))+w2σ

(
vT2 φ(x)

)
This is the basic recipe.

We can add more hidden nodes.
We can add more hidden layers.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 5 / 35

Neural Networks Overview

Activation Functions

The nonlinearity of the activation function is a key ingredient.
The logistic sigmoid function is one of the more commonly used:

σ(x) =
1

1+ e−x
.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 6 / 35

Neural Networks Overview

Activation Functions

More recently, the rectified linear function has been very popular:

σ(x) =max(0,x).

Much faster to calculate, and to calculate its derivatives.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 7 / 35

Neural Networks Overview

Approximation Ability: f (x) = x2

3 hidden units; logistic activation functions
Blue dots are training points; Dashed lines are hidden unit outputs;
Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 8 / 35

Neural Networks Overview

Approximation Ability: f (x) = sin(x)

3 hidden units; logistic activation function
Blue dots are training points; Dashed lines are hidden unit outputs;
Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 9 / 35

Neural Networks Overview

Approximation Ability: f (x) = |x |

3 hidden units; logistic activation functions
Blue dots are training points; Dashed lines are hidden unit outputs;
Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 10 / 35

Neural Networks Overview

Approximation Ability: f (x) = 1(x > 0)

3 hidden units; logistic activation function
Blue dots are training points; Dashed lines are hidden unit outputs;
Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 11 / 35

Neural Networks Overview

Neural Network: Hidden Nodes as Learned Features

Can interpret h1 and h2 as nonlinear features learned from data.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 12 / 35

Neural Networks Overview

Facial Recognition: Learned Features

From Andrew Ng’s CS229 Deep Learning slides
(http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)David Rosenberg (New York University) DS-GA 1003 March 11, 2015 13 / 35

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Neural Networks Overview

Neural Network: The Hypothesis Space

What hyperparameters describe a neural network?

Number of layers
Number of nodes in each hidden layer
Activation function (but so many to choose from)

Example neural network hypothesis space:

F =
{
f : Rd → R | f is a NN with 2 hidden layers, 500 nodes in each

}
Functions in F parameterized by the weights between nodes.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 14 / 35

Neural Networks Overview

Neural Network: Loss Functions and Learning

Neural networks give a new hypothesis space.
But we can use all the same loss functions we’ve used before.
Optimization method of choice: stochastic gradient descent.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 15 / 35

Neural Networks Overview

Neural Network: Objective Function

In our simple network, the output score is given by

f (x) = w1σ(v
T
1 φ(x))+w2σ

(
vT2 φ(x)

)
Objective with square loss is then

J(w ,v) =
n∑

i=1

(yi − fw ,v (xi))
2

Note: J(w ,v) is not convex.
makes optimization much more difficult
accounts for many of the “tricks of the trade”

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 16 / 35

Neural Networks Overview

Learning with Back-Propagation

Back-propagation is an algorithm for computing the SGD gradient
Mathematically, it’s not necessary.
With lots of chain rule, you can work out the gradient by hand.
Back-propagation is

a clean way to organize the computation of the gradient
an efficient way to compute the gradient

Nice introduction to this perspective:

Stanford CS221 Lecture 3, Slides 63-96
http:
//web.stanford.edu/class/cs221/lectures/learning2.pdf

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 17 / 35

http://web.stanford.edu/class/cs221/lectures/learning2.pdf
http://web.stanford.edu/class/cs221/lectures/learning2.pdf

Neural Network Regularization

Neural Network Regularization

Neural networks are very expressive.
Correspond to big hypothesis spaces.
Many approaches are used for regularization.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 18 / 35

Neural Network Regularization

Tikhonov Regularization? Sure.

Can add an `2 and/or `1 regularization terms to our objective:

J(w ,v) =
n∑

i=1

(yi − fw ,v (xi))
2+λ1‖w‖2+λ2‖v‖2

In neural network literature, this is often called weight decay.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 19 / 35

Neural Network Regularization

Regularization by Early Stopping

As we train, check performance on validation set every once in a while.
Don’t stop immediately after validation error goes back up.
The “patience” parameter: the number training rounds to continue
after finding a minimum of validation error.

Start with patience = 10000.
Whenever we find a minimum at iteration T ,

Set patience← patience+ cT , for some constant c.
Then run at least patience extra iterations before stopping.

See http://arxiv.org/pdf/1206.5533v2.pdf for details.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 20 / 35

http://arxiv.org/pdf/1206.5533v2.pdf

Neural Network Regularization

Max-Norm Regularization

Max-norm regularization: Enforce max norm of incoming weight
vector at every hidden node to be bounded:

‖w‖2 6 c .

Project any w that’s too large onto ball of radius c .
It’s like `2-complexity control, but locally at each node.
Why?

There are heuristic justifications, but proof is in the performance.
We’ll see below.

See http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf for details.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 21 / 35

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Neural Network Regularization

Dropout for Regularization

A recent trick for improving generalization performance is dropout.
A fixed probability p is chosen.
Before every stochastic gradient step,

each node is selected for “dropout” with probability p
a dropout node is removed, along with its links
after the stochastic gradient step, all nodes are restored.

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 22 / 35

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Neural Network Regularization

Dropout for Regularization

At prediction time

all nodes are present
outgoing weights are multiplied by p.

Dropout probability set using a validation set, or just set at 0.5.

Closer to 0.8 usually works better for input units.

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 23 / 35

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Neural Network Regularization

Dropout: Why might this help?

Since any node may randomly disappear,

forced to “spread the knowledge” across the nodes.

Each hidden only gets a randomly chosen sample of its inputs,

so won’t become too reliant on any single input.
More robust.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 24 / 35

Neural Network Regularization

Dropout: Does it help?

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 25 / 35

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Neural Network Regularization

How big a network?

How many hidden units?
With proper regularization, too many doesn’t hurt.

Except in computation time.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 26 / 35

Multiple Output Networks

Multiple Output Neural Networks

Very easy to add extra outputs to neural network structure.

From Andrew Ng’s CS229 Deep Learning slides
(http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 27 / 35

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Multiple Output Networks

Multitask Learning

Suppose X= {Natural Images}.
We have two tasks:

Does the image have a cat?
Does the image have a dog?

Can have one output for each task.
Seems plausible that basic pixel features would be shared by tasks.
Learn them on the same neural network – benefit both tasks.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 28 / 35

Multiple Output Networks

Single Task with “Extra Tasks”

Only one task we’re interested in.
Gather data from related tasks.
Train them along with the task you’re interested in.
No related tasks? Another trick:

Choose any input feature.
Change it’s value to zero.
Make the prediction problem to predict the value of that feature.
Can help make model more robust (not depending too heavily on any
single input).

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 29 / 35

Multiple Output Networks

Multiclass Classification

Could make each class a separate task / output.
Suppose we have K classes.
Use a one-hot encoding of each yi ∈ {1, . . . ,K }:

yi = (yi1, . . . ,yik) with yik = 1(yi = k).

K output scores: f1(x), . . . , fK (x). Each fk is trained to predict 1 if
class is k , 0 otherwise.
Predict with f ∗(x) = argmaxk [fk(x)] .
Old days: train each output separately, e.g. with square loss.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 30 / 35

Multiple Output Networks

Multiclass Classification: Cross-Entropy Loss

Network can do better if it “knows” that classes are mutually exclusive.

Need to introduce a joint loss across the outputs.
Joint loss function (cross-entropy/deviance):

`(w ,v) = −

n∑
i=1

K∑
i=1

yik log fk(xi),

where yik = 1(yi = k).
We’ll discuss this further when we talk about exponential families and
generalized linear models.

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 31 / 35

Neural Networks for Features

OverFeat: Features

OverFeat is a neural network for image classification

Trained on the huge ImageNet dataset
Lots of computing resources into training the network.

All those hidden layers of the network are very valuable features.
Paper: “CNN Features off-the-shelf: an Astounding Baseline for
Recognition”
Showed that using features from OverFeat makes it easy to achieve
state-of-the-art performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 32 / 35

https://github.com/sermanet/OverFeat

Neural Networks: When and why?

Neural Networks Benefit from Big Data

From Andrew Ng’s CS229 Deep Learning slides
(http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 33 / 35

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Neural Networks: When and why?

Big Data Requires Big Resources

Best results always involve GPU processing.
Typically on huge networks.

From Andrew Ng’s CS229 Deep Learning slides
(http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 34 / 35

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Neural Networks: When and why?

Neural Networks: When to Use?

Computer vision problems

All state of the art methods use neural networks

Speech recognition

All state of the art methods use neural networks

Natural Language problems?

Maybe. Check out “word2vec”
https://code.google.com/p/word2vec/.
Represents words and phrases using real-valued vectors.

Potentially much better than bag of words.

From Andrew Ng’s CS229 Deep Learning slides
(http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David Rosenberg (New York University) DS-GA 1003 March 11, 2015 35 / 35

https://code.google.com/p/word2vec/
http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

	Neural Networks Overview
	Neural Network Regularization
	Multiple Output Networks
	Neural Networks for Features
	Neural Networks: When and why?

