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Conditional Gaussian Regression

Gaussian Regression

@ Input space X =RY, Output space Yy =R

o Hypothesis space consists of functions f : x — N (w'x, 02).
o For each x, f(x) returns a particular Gaussian density with variance o2 .
o Choice of w determines the function.

@ For some parameter w € R?, can write our prediction function as

[fu (X)) (y) = pw(y [ x) =N(y | w'x,0?),

where 02 > 0.
o Given some i.i.d. data D ={(x1,y1),...,(Xn, ¥n)}, how to assess the fit?
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Conditional Gaussian Regression

Gaussian Regression: Likelihood Scoring

Suppose we have data D ={(x1,y1),..., (Xn, ¥a)}.
Compute the model likelihood for D:

pw(D) :pr(y,- | x;) [by independence]
i=1

Maximum Likelihood Estimation (MLE) finds w maximizing p, (D).

Equivalently, maximize the data log-likelihood:

n
w* =arg maxZ|Ong()/i | xi)
weRd iy

@ Let's start solving this!
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Conditional Gaussian Regression

Gaussian Regression: MLE

@ The conditional log-likelhood is:

D logpw(yi | xi)

i—1

: 1 (yi —w’x)?
= Ytoe|mew (-5 )

TERRATE

i=1

independent of w

@ MLE is the w where this is maximized.

o Note that o2 is irrelevant to finding the maximizing w.

@ Can drop the negative sign and make it a minimization problem.
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Conditional Gaussian Regression

Gaussian Regression: MLE

o The MLE is

* =argmin E i—w ' x;)?

weRd [T

@ This is exactly the objective function for least squares.

e From here, can use usual approaches to solve for w*(linear algebra,
calculus, iterative methods etc.)

o NOTE: Parameter vector w only interacts with x by an inner product
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Poisson Regression

Poisson Regression: Setup

@ Input space X =R, Output space Y ={0,1,2,3,4,...}

@ Hypothesis space consists of functions f : x — Poisson (A(x)).

e That is, for each x, f(x) returns a Poisson with mean A(x).
e What function?

Recall A > 0.

GLMs (and Poisson is a special case) have a linear dependence on x.

Standard approach is to take

A(x) =exp (WTX) ,

for some parameter vector w.

o Note that range of A(x) = (0,00), (appropriate for the Poisson
parameter).
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Poisson Regression

Poisson Regression: Likelihood Scoring

@ Suppose we have data D ={(x1,y1),..., (Xn, ¥n)}
@ Last time we found the log-likelihood for Poisson was:

n

logp(D,A) = > lyilogA—A—log(yi)]
i=1
@ Plugging in A(x) = exp (WTX), we get

n

logp(D,A) = Z [yilog [exp (wx)] —exp (W x) —log ()]
i—1
= Z [y,-WTx—exp (WTX) —log ()/i!)]
i—1

@ Maximize this w.r.t. w to find the Poisson regression.
@ No closed form for optimum, but it's concave, so easy to optimize.
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Bernoulli Regression

Linear Probabilistic Classifiers

@ Setting: X=R?, Y={0,1}

@ Foreach X =x, p(Y =1|x)=60. (i.e. Y has a Bernoulli(0)
distribution)

@ 0 may vary with x.
@ For each x € RY, just want to predict 0 € [0, 1].
@ Two steps:

x = wlixe flwx),
< =~ ,
SEAE €l0,1]

where f : R — [0, 1] is called the transfer or inverse link function.
@ Probability model is then

plY =1]x) = f(wx)
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Bernoulli Regression

Inverse Link Functions

@ Two commonly used “inverse link” functions to map from w’x to 6:

1.00 =
0.75-
Y
0.50 - Logistic Function
=== Normal CDF
0.25 -
0.00 -

| | |
-50 -25 00 25 5.0
Linear(x)

@ Logistic function = Logistic Regression
@ Normal CDF = Probit Regression
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Multinomial Logistic Regression

Multinomial Logistic Regression

@ Setting: X = R, Y={1,... K}
@ The numbers (01,...,0.) where Zle 0. =1 represent a
e "“multinoulli” or “categorical” distribution.
@ For each x, we want to produce a distribution on the K classes.

@ That is, for each x and each y €{1,..., K}, we want to produce a
probability

ply[x) =06y,
where Z}’le 0, =1
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Multinomial Logistic Regression

Multinomial Logistic Regression: Classic Setup

o Classically we write multinomial logistic regression (cf. KPM Sec.

8.3.7):
T
exp (W X)
plylx)=—c————.
ZC:]_ eXp(Wc X)
where we've introduced parameter vectors wy, ..., wx € RY.

@ The log of this likelihod is concave and straightforward to optimize.
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More Convenient to Flatten This

o Dropping proportionality constant Z(x) = Y X_; exp (w[ x), we have

plylx) o exp(wx)

K
= exp ( 1y = C)WCTX>
c=1

K d
= exp| ) 1y=0)|) (we)jx
c=1 j=1
K d
= exp =c)x;
2,2 il Sy
o Create a “feature” for every term 1(y = c)x;, for c €{1,... k}.

@ Define feature function

g(x,y) =1(y = c)x;.
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More Convenient to Flatten This

e So

K d
plylx) o exp| Y D> (we);lly=c)x

—_—
i=1j=1

- oo ater)

o What is R? What are the u,'s

@ R=kd and u,’s are just some flattening of wy,..., wk into a single
vector.
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More Convenient to Flatten This

e Why did we do this?
o Computational Reason:
o To plug into optimization algorithm, easier to have a single parameter
vector.
o Original version had K parameter vectors.
@ Conceptual Reason:
o Introduce the idea of “features” that depend jointly on input and

output.

o These "“features” measure “compatibility” between input and particular
label.

o We could call them “compatibility functions”, but we usually call them
features.

e Example from natural language processing: (Part-of-speech tagging)

1 if y ="NOUN" and x; = "apple"
8r ()/« X) = .
0 otherwise
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Generalized Linear Models (Lite)

Natural Exponential Families

{pe IGEG)CRd} is a family of pdf's or pmf's on Y.

The family is a natural exponential family with parameter 0 if

poly) = Zéle)h(y)exr) [07y].

h(y) is a nonnegative function called the base measure.

0) = [y hly)exp [87y] is the partition function.

The natural parameter space is the set @ ={0 | Z(0) < oo}.

o the set of 0 for which exp [0 y] can be normalized to have integral 1

0 is called the natural parameter.

(]

Note: In exponential family form, family typically has a different
parameterization than the “standard” form.
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Specifying a Natural Exponential Family

@ The family is a natural exponential family with parameter 0 if
poly) = 5 h(y)exp[07y]
Z(6) '

@ To specify a natural exponential family, we need to choose h(y).
e Everything else is determined.

@ Implicit in choosing h(y) is the choice of the support of the
distribution.
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Generalized Linear Models (Lite)

Natural Exponential Families: Examples

The following are univariate natural exponential families:
© Normal distribution with known variance.
@ Poisson distribution
© Gamma distribution (with known k parameter)

© Bernoulli distribution (and Binomial with known number of trials)
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Generalized Linear Models (Lite)

Example: Poisson Distribution

@ For Poisson, we found the log probability mass function is:
log[p(y;A)] = ylogA—A—log(y!).
o Exponentiating this, we get
ply;A) = exp(ylogh—A—log(y!).
o If we reparametrize, taking © = logA, we can write this as
ply,0) = exp(y0—e®—log(y!))
= yl,elee exp (y9),
which is in natural exponential family form, where
Z(0) = exp (ee)
hy) = -

ﬁ.
@ 0 =logA is the natural parameter.
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Generalized Linear Models (Lite)

Generalized Linear Models [with Canonical Link]

In GLMs, we first choose a natural exponential family.
o (This amounts to choosing h(y).)

The idea is to plug in w x for the natural parameter.

@ This gives models of the following form:

poly|x)= h(y)exp [(w”x)y].

Z(wTx)

This is the form we had for Poisson regression.

Note: This is very convenient, but only works if ©® = R.
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Generalized Linear Models (Lite)

Generalized Linear Models [with General Link]

@ More generally, choose a function {: R — © so that
x—=w!x—1Pwx),
where 0 =(w 7 x) is the natural parameter for the family.
@ So our final prediction (for one-parameter families) is:

1

———=—C X WTX .
Z(lb(wa))h(y)e pW(w’x)y]

po(y | x) =
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