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Maximum Likelihood Estimation

Estimating a Probability Distribution: Setting

Let p(y) represent a probability distribution on Y.
p(y) is unknown and we want to estimate it.
Assume that p(y) is either a

probability density function on a continuous space Y, or a
probability mass function on a discrete space Y.

Typical Y’s:

Y= R; Y= Rd [typical continuous distributions]
Y= {−1,1} [e.g. binary classificaiton]
Y= {0,1,2, . . . ,K } [e.g. multiclass problem]
Y= {0,1,2,3,4 . . .} [unbounded counts]
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Maximum Likelihood Estimation

Evaluating a Probabilty Distribution Estimate

Before we talk about estimation, let’s talk about evaluation.
Somebody gives us an estimate of the probability distribution

p̂(y).

How can we evaluate how good it is?
We want p̂(y) to be descriptive of future data.
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Maximum Likelihood Estimation

Likelihood of a Predicted Distribution

Suppose we have

D= {y1, . . . ,yn} sampled i.i.d. from p(y).

Then the likelihood of p̂ for the data D is defined to be

p̂(D) =

n∏
i=1

p̂(yi ).

We’ll write this as
LD(p̂) := p̂(D)

Special case: If p̂ is a probability mass function, then

LD(p̂) is the probability of D under p̂.
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Maximum Likelihood Estimation

Parametric Models

Definition
A parametric model is a set of probability distributions indexed by a
parameter θ ∈Θ. We denote this as

{p(y ;θ) | θ ∈Θ} ,

where θ is the parameter and Θ is the parameter space.

Sometimes people began their analysis with something like:

Suppose the data are generated by a distribution in parametric
family F (e.g. a Poisson family).

Our perspective is different, at least conceptually:
We don’t make any assumptions about the data generating distribution.
We use a parametric model as a hypothesis space.
(More on this later.)
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Maximum Likelihood Estimation

Poisson Family

Support Y= {0,1,2,3, . . .}.
Parameter space: {λ ∈ R | λ > 0}
Probability mass function on k ∈ Y:

p(k ;λ) = λke−λ/(k!)
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Maximum Likelihood Estimation

Beta Family

Support Y= (0,1). [The unit interval.]
Parameter space: {θ= (α,β) | α,β > 0}
Probability density function on y ∈ Y:

p(y ;a,b) =
xα−1 (1− x)β−1

B(α,β)
.

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia
Commonshttp://taps-graph-review.wikispaces.com/Box+and+Whisker+Plots.
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Maximum Likelihood Estimation

Gamma Family

Support Y= (0,∞). [Positive real numbers]
Parameter space: {θ= (k ,θ) | k > 0,θ > 0}
Probability density function on y ∈ Y:

p(y ;k ,θ) =
1

Γ(k)θk
xk−1e−x/θ.

Figure from Wikipedia.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Suppose we have a parametric model {p(y ,θ) | θ ∈Θ} and a sample
D= {y1, . . . ,yn}.

Definition
The maximum likelihood estimator (MLE) for θ in the model
{p(y ,θ) | θ ∈Θ} is

θ̂= argmax
θ∈Θ

LD(θ) = argmax
θ∈Θ

n∏
i=1

p(yi ,θ).

In practice, we prefer to work with the log likelihood. Same maximum but

logp(yi ,θ) =
n∑

i=1

logp(yi ,θ),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Finding the MLE is an optimization problem.

For some model families, calculus gives closed form for MLE.

Otherwise, we can use the numerical methods we know (e.g. SGD).

Note: In certain situations, the MLE may not exist.

But there is usually a good reason for this.

e.g. Gaussian family
{
N(µ,σ2 | µ ∈ R,σ2 > 0

}
, Single observation y .

Take µ= y and σ2→ 0 drives likelihood to infinity. MLE doesn’t exist.
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Maximum Likelihood Estimation

Example: MLE for Poisson

Suppose we’ve observed some counts D= {k1, . . . ,kn} ∈ {0,1,2,3, . . .}.
The Poisson log-likelihood for a single count is

log [p(k ;λ)] = log
[
λke−λ

k!

]
= k logλ−λ− log (k!)

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)]
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Maximum Likelihood Estimation

Example: MLE for Poisson

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)]

First order condition gives

0=
∂

∂λ
[logp(D,λ)] =

n∑
i=1

[
ki
λ
−1

]

=⇒ λ =
1
n

n∑
i=1

ki

So MLE λ̂ is just the mean of the counts.
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Maximum Likelihood Estimation

Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method Test Log-Likelihood
Poisson −392.16

Negative Binomial −188.67
Histogram (Bin width = 7) −∞
95% Histogram +.05 NegBin −203.89
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Statistical Learning Formulation

Probability Estimation as Statistical Learning

Output space Y (containing observations from distribution P)
Action space
A= {p(y) | p is a probability density or mass function on Y}.
How to encode our objective of “high likelihood” as a loss function?

Define loss function as the negative log-likelihood of y under p(·):

` : A×Y → R
(p,y) 7→ − logp(y)
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Statistical Learning Formulation

Probability Estimation as Statistical Learning

The risk of p is
R(p) = EY [− logp(Y )] .

The empirical risk of p for a sample D= {y1, . . . ,yn} ∈ Y is

R̂(p) = −

n∑
i=1

logp(yi ),

which is exactly the log-likelihood of p for the data D.
Therefore, MLE is just an empirical risk minimizer!
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Statistical Learning Formulation

Estimation Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE (i.e. ERM) can overfit!
Example Hypothesis Spaces / Probability Models:

F = {Poisson distributions}.
F = {Negative binomial distributions}.
F ={Histogram with arbitrarily many bins} [will likely overfit for
continuous data]
F ={Histogram with 10 bins}
F = {Depth 5 decision trees with histogram estimates in leaves}

How to judge with hypothesis space works the best?
Choose the model with the highest likelihood for a test set.
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Generalized Regression

Generalized Regression / Conditional Distribution Estimation

Given X , predict probability distribution p(Y | X = x)

How do we represent the probability distribution?
We’ll consider parametric families of distributions.

distribution represented by parameter vector

Examples:
1 Logistic regression (Bernoulli distribution)
2 Probit regression (Bernoulli distribution)
3 Poisson regression (Poisson distribution)
4 Linear regression (Normal distribution, fixed variance)
5 Generalized Linear Models (GLM) (encompasses all of the above)
6 Generalized Additive Models (GAM)
7 Generalized Boosting Models (GBM)
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Generalized Regression

Generalized Regression as Statistical Learning

Input space X

Output space Y

All pairs (X ,Y ) are independent with distribution PX×Y.
Action space
A= {p(y) | p is a probability density or mass function on Y}.
Hypothesis spaces comprise decision functions f : X→A.

Given an x ∈ X, predict a probability distribution p(y) on Y.

Loss function as before:

` : A×Y → R
(p,y) 7→ − logp(y)
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Generalized Regression

Generalized Regression as Statistical Learning

The risk of decision function f : X→A

R(f ) = −EX ,Y log [f (X )] (Y ),

where f (X ) is a PDF or PMF on Y, and we’re evaluating it on Y .

The empirical risk of f for a sample D= {y1, . . . ,yn} ∈ Y is

R̂(f ) = −

n∑
i=1

log [f (xi )] (yi ).

This is called the negative conditional log-likelihood.
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