Conditional Probability Models

David Rosenberg

New York University

March 30, 2015

Estimating a Probability Distribution: Setting

- Let p(y) represent a probability distribution on \mathcal{Y} .
- p(y) is **unknown** and we want to **estimate** it.
- Assume that p(y) is either a
 - probability density function on a continuous space \mathcal{Y} , or a
 - probability mass function on a discrete space y.
- Typical Y's:
 - $\mathcal{Y} = \mathbf{R}$; $\mathcal{Y} = \mathbf{R}^d$ [typical continuous distributions]
 - $\mathcal{Y} = \{-1, 1\}$ [e.g. binary classification]
 - $\mathcal{Y} = \{0, 1, 2, \dots, K\}$ [e.g. multiclass problem]
 - $\mathcal{Y} = \{0, 1, 2, 3, 4...\}$ [unbounded counts]

Evaluating a Probabilty Distribution Estimate

- Before we talk about estimation, let's talk about evaluation.
- Somebody gives us an estimate of the probability distribution

 $\hat{p}(y)$.

- How can we evaluate how good it is?
- We want $\hat{p}(y)$ to be descriptive of **future** data.

Likelihood of a Predicted Distribution

• Suppose we have

 $\mathcal{D} = \{y_1, \dots, y_n\}$ sampled i.i.d. from p(y).

• Then the likelihood of \hat{p} for the data \mathcal{D} is defined to be

$$\hat{\rho}(\mathcal{D}) = \prod_{i=1}^{n} \hat{\rho}(y_i).$$

We'll write this as

$$L_{\mathcal{D}}(\hat{\boldsymbol{\rho}}) \coloneqq \hat{\boldsymbol{\rho}}(\mathcal{D})$$

- Special case: If \hat{p} is a probability mass function, then
 - $L_{\mathcal{D}}(\hat{p})$ is the probability of \mathcal{D} under \hat{p} .

Parametric Models

Definition

A parametric model is a set of probability distributions indexed by a parameter $\theta \in \Theta$. We denote this as

 $\{p(y; \theta) \mid \theta \in \Theta\},\$

where θ is the **parameter** and Θ is the **parameter space**.

• Sometimes people began their analysis with something like:

Suppose the data are generated by a distribution in parametric family \mathcal{F} (e.g. a Poisson family).

- Our perspective is different, at least conceptually:
 - We don't make any assumptions about the data generating distribution.
 - We use a parametric model as a hypothesis space.
 - (More on this later.)

David Rosenberg (New York University)

Poisson Family

- Support $\mathcal{Y} = \{0, 1, 2, 3, ...\}.$
- Parameter space: $\{\lambda \in \mathbf{R} \mid \lambda > 0\}$
- Probability mass function on $k \in \mathcal{Y}$:

 $p(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{(k!)}$

Beta Family

- Support $\mathcal{Y} = (0, 1)$. [The unit interval.]
- Parameter space: $\{\theta = (\alpha, \beta) \mid \alpha, \beta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commonshttp://taps-graph-review.wikispaces.com/Box+and+Whisker+Plots.

David Rosenberg (New York University)

DS-GA 1003

Gamma Family

- Support $\mathcal{Y} = (0, \infty)$. [Positive real numbers]
- Parameter space: $\{\theta = (k, \theta) \mid k > 0, \theta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

Figure from Wikipedia.

Maximum Likelihood Estimation

Suppose we have a parametric model $\{p(y, \theta) \mid \theta \in \Theta\}$ and a sample $\mathcal{D} = \{y_1, \dots, y_n\}.$

Definition

The maximum likelihood estimator (MLE) for θ in the model $\{p(y, \theta) \mid \theta \in \Theta\}$ is

$$\hat{\theta} = \underset{\theta \in \Theta}{\arg \max} L_{\mathcal{D}}(\theta) = \underset{\theta \in \Theta}{\arg \max} \prod_{i=1}^{n} p(y_i, \theta).$$

In practice, we prefer to work with the log likelihood. Same maximum but

$$\log p(y_i, \theta) = \sum_{i=1}^n \log p(y_i, \theta),$$

and sums are easier to work with than products.

David Rosenberg (New York University)

Maximum Likelihood Estimation

- Finding the MLE is an optimization problem.
- For some model families, calculus gives closed form for MLE.
- Otherwise, we can use the numerical methods we know (e.g. SGD).
- Note: In certain situations, the MLE may not exist.
 - But there is usually a good reason for this.
- e.g. Gaussian family $\{\mathcal{N}(\mu, \sigma^2 \mid \mu \in \mathbf{R}, \sigma^2 > 0\}$, Single observation y.
 - Take $\mu = y$ and $\sigma^2 \rightarrow 0$ drives likelihood to infinity. MLE doesn't exist.

Example: MLE for Poisson

- Suppose we've observed some counts $\mathcal{D} = \{k_1, \ldots, k_n\} \in \{0, 1, 2, 3, \ldots\}$.
- The Poisson log-likelihood for a single count is

$$\log[p(k;\lambda)] = \log\left[\frac{\lambda^{k}e^{-\lambda}}{k!}\right]$$
$$= k\log\lambda - \lambda - \log(k!)$$

• The full log-likelihood is

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]$$

Example: MLE for Poisson

• The full log-likelihood is

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]$$

• First order condition gives

$$0 = \frac{\partial}{\partial \lambda} [\log p(\mathcal{D}, \lambda)] = \sum_{i=1}^{n} \left[\frac{k_i}{\lambda} - 1 \right]$$
$$\implies \lambda = \frac{1}{n} \sum_{i=1}^{n} k_i$$

• So MLE $\hat{\lambda}$ is just the mean of the counts.

Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method	Test Log-Likelihood
Poisson	-392.16
Negative Binomial	-188.67
Histogram (Bin width $= 7$)	$-\infty$
95% Histogram +.05 NegBin	-203.89

Probability Estimation as Statistical Learning

- Output space \mathcal{Y} (containing observations from distribution P)
- Action space
 A = {p(y) | p is a probability density or mass function on 𝔅}.
- How to encode our objective of "high likelihood" as a loss function?
- Define loss function as the negative log-likelihood of y under $p(\cdot)$:

$$\begin{array}{rccc} \ell : & \mathcal{A} \times \mathcal{Y} & \to & \mathsf{R} \\ & & (p, y) & \mapsto & -\log p(y) \end{array}$$

Probability Estimation as Statistical Learning

• The risk of p is

$$R(p) = \mathbb{E}_{Y}\left[-\log p(Y)\right].$$

• The empirical risk of p for a sample $\mathcal{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(p) = -\sum_{i=1}^{n} \log p(y_i),$$

which is exactly the log-likelihood of p for the data \mathcal{D} .

• Therefore, MLE is just an empirical risk minimizer!

Estimation Distributions, Overfitting, and Hypothesis Spaces

- Just as in classification and regression, MLE (i.e. ERM) can overfit!
- Example Hypothesis Spaces / Probability Models:
 - $\mathcal{F} = \{ \mathsf{Poisson distributions} \}.$
 - $\mathcal{F} = \{ \text{Negative binomial distributions} \}.$
 - $\mathcal{F} = \{\text{Histogram with arbitrarily many bins}\}$ [will likely overfit for continuous data]
 - $\mathcal{F} = \{\text{Histogram with 10 bins}\}$
 - $\mathcal{F} = \{ \text{Depth 5 decision trees with histogram estimates in leaves} \}$
- How to judge with hypothesis space works the best?
- Choose the model with the highest likelihood for a test set.

Generalized Regression / Conditional Distribution Estimation

- Given X, predict probability distribution p(Y | X = x)
- How do we represent the probability distribution?
- We'll consider *parametric families* of distributions.
 - distribution represented by parameter vector
- Examples:
 - Logistic regression (Bernoulli distribution)
 - Probit regression (Bernoulli distribution)
 - Oisson regression (Poisson distribution)
 - 4 Linear regression (Normal distribution, fixed variance)
 - Seneralized Linear Models (GLM) (encompasses all of the above)
 - Generalized Additive Models (GAM)
 - Generalized Boosting Models (GBM)

Generalized Regression as Statistical Learning

- Input space ${\mathfrak X}$
- Output space \mathcal{Y}
- All pairs (X, Y) are independent with distribution $P_{\mathfrak{X} \times \mathfrak{Y}}$.
- Action space

 $\mathcal{A} = \{ p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y} \}.$

- Hypothesis spaces comprise decision functions $f : \mathcal{X} \to \mathcal{A}$.
 - Given an $x \in \mathcal{X}$, predict a probability distribution p(y) on \mathcal{Y} .
- Loss function as before:

$$\begin{array}{rccc} \ell \colon & \mathcal{A} \times \mathcal{Y} & \to & \mathsf{R} \\ & & (p, y) & \mapsto & -\log p(y) \end{array}$$

Generalized Regression as Statistical Learning

• The risk of decision function $f: \mathcal{X} \rightarrow \mathcal{A}$

$$R(f) = -\mathbb{E}_{X,Y} \log \left[f(X) \right] (Y),$$

where f(X) is a PDF or PMF on \mathcal{Y} , and we're evaluating it on Y.

• The empirical risk of f for a sample $\mathcal{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\sum_{i=1}^{n} \log [f(x_i)](y_i).$$

This is called the negative **conditional log-likelihood**.