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Estimating a Probability Distribution: Setting

@ Let p(y) represent a probability distribution on Y.
@ p(y) is unknown and we want to estimate it.
@ Assume that p(y) is either a

o probability density function on a continuous space Y, or a
e probability mass function on a discrete space Y.

e Typical Y's:
o Y=R; Y =R [typical continuous distributions]
o Y={-1,1} [e.g. binary classificaiton]
o Y={0,1,2,...,K} [e.g. multiclass problem]
e Y=1{0,1,2 ,3 4...} [unbounded counts]
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Evaluating a Probabilty Distribution Estimate

o Before we talk about estimation, let’s talk about evaluation.

@ Somebody gives us an estimate of the probability distribution

ply).

@ How can we evaluate how good it is?

@ We want p(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

@ Suppose we have
D={y,..., Yn} sampled i.i.d. from p(y).
@ Then the likelihood of p for the data D is defined to be
pD) =] a0
i=1
o We'll write this as
Lp(p):=p(D)

@ Special case: If p is a probability mass function, then

o Lp(p) is the probability of D under p.
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Parametric Models
Definition

A parametric model is a set of probability distributions indexed by a
parameter 8 € ©. We denote this as

{p(y;0) 16 €6},

where 0 is the parameter and © is the parameter space.

@ Sometimes people began their analysis with something like:

Suppose the data are generated by a distribution in parametric
family F (e.g. a Poisson family).

@ Our perspective is different, at least conceptually:

o We don't make any assumptions about the data generating distribution.
o We use a parametric model as a hypothesis space.
o (More on this later.)
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Maximum Likelihood Estimation

Poisson Family

@ Support Y={0,1,2,3,...}.
@ Parameter space: {A € R|A >0}
@ Probability mass function on k € Y:

p(k;A) =Ake ™/ (k)
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Beta Family

@ Support Y =(0,1). [The unit interval.]
o Parameter space: {0 = (o, B) | o, p > 0}
@ Probability density function on y € Y:

x*1(1 —X)B_l

ply;a, b) =
B(«, B)
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Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia
Commonshttp://taps-graph-review.wikispaces.com/Box+and+Whisker+Plots.
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Maximum Likelihood Estimation

Gamma Family

@ Support Y = (0,00). [Positive real numbers]
@ Parameter space: {0 = (k,0)| k> 0,0 >0}
@ Probability density function on y € Y:

Figure from Wikipedia.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Suppose we have a parametric model {p(y,0) | 6 € ®} and a sample
D={,....ynk

Definition

The maximum likelihood estimator (MLE) for © in the model
{p(y,0)10€B}is

A~

0 =argmaxLp(0) —argmapr yi, 0
0cO 0€0 7

y

In practice, we prefer to work with the log likelihood. Same maximum but

log p(yi, 0 Zlogp yi.0),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Finding the MLE is an optimization problem.
@ For some model families, calculus gives closed form for MLE.
@ Otherwise, we can use the numerical methods we know (e.g. SGD).

@ Note: In certain situations, the MLE may not exist.

e But there is usually a good reason for this.

e.g. Gaussian family {N(u, 0?|ueR, o> O}, Single observation y.
o Take w=y and 02 — 0 drives likelihood to infinity. MLE doesn't exist.
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Example: MLE for Poisson

@ Suppose we've observed some counts D = {kq, ..., k,} €{0,1,2,3,...}.

@ The Poisson log-likelihood for a single count is

k ,—A
log[p(k;\)] = |og[}\ ZI ]

= klogA—A—log (k')

o The full log-likelihood is

n

logp(D.A) = > [kilogh—A—log (k)]
i=1
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Example: MLE for Poisson

o The full log-likelihood is

n

logp(D,A) = Z [kilogA — A —log (k;!)]
i=1

@ First order condition gives

) © Tk
0= = llogp(D,A)] = Z[—l]

— A = ;Zk,‘

@ So MLE A is just the mean of the counts.
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Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method ‘ Test Log-Likelihood ‘
Poisson —392.16
Negative Binomial —188.67
Histogram (Bin width = 7) —00
95% Histogram +.05 NegBin —203.89
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Probability Estimation as Statistical Learning

e Output space Y (containing observations from distribution P)

@ Action space
A ={p(y) | pis a probability density or mass function on Y}.

@ How to encode our objective of “high likelihood” as a loss function?

@ Define loss function as the negative log-likelihood of y under p(-):

0: AxY — R
(p.y) + —logply)
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Probability Estimation as Statistical Learning

@ Therisk of pis
R(p) =Ey [—logp(Y)].

@ The empirical risk of p for a sample D ={y1,...,y,} €Y is
R(p)=—) logp(yi),
i=1

which is exactly the log-likelihood of p for the data D.

@ Therefore, MLE is just an empirical risk minimizer!
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Estimation Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE (i.e. ERM) can overfit!

Example Hypothesis Spaces / Probability Models:

F ={Poisson distributions}.

F ={Negative binomial distributions}.

F ={Histogram with arbitrarily many bins} [will likely overfit for
continuous data]

F ={Histogram with 10 bins}

F ={Depth 5 decision trees with histogram estimates in leaves}

How to judge with hypothesis space works the best?
Choose the model with the highest likelihood for a test set.
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Generalized Regression

Generalized Regression / Conditional Distribution Estimation

e Given X, predict probability distribution p(Y | X = x)
@ How do we represent the probability distribution?
e We'll consider parametric families of distributions.

o distribution represented by parameter vector

@ Examples:

@ Logistic regression (Bernoulli distribution)

@ Probit regression (Bernoulli distribution)

© Poisson regression (Poisson distribution)

@ Linear regression (Normal distribution, fixed variance)

© Generalized Linear Models (GLM) (encompasses all of the above)
Q@ Generalized Additive Models (GAM)

@ Generalized Boosting Models (GBM)
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Generalized Regression

Generalized Regression as Statistical Learning

Input space X
Output space Y
All pairs (X, Y) are independent with distribution Py xy.

Action space
A ={p(y) | pis a probability density or mass function on Y}.

@ Hypothesis spaces comprise decision functions f: X — A.

e Given an x € X, predict a probability distribution p(y) on Y.

@ Loss function as before:

0: AxY — R
(p,y) + —logp(y)
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Generalized Regression

Generalized Regression as Statistical Learning

@ The risk of decision function f: X — A
R(f) = —Ex y log[f(X)I(Y),
where f(X) is a PDF or PMF on Y, and we're evaluating it on Y.

@ The empirical risk of f for a sample D ={y;,...,yat €Y is
R(F) == loglf(x)](y)-
i=1

This is called the negative conditional log-likelihood.
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