Midterm Review

David Rosenberg

New York University

April 4, 2015

Typical Sequence of Events at Deployment Time

Many problem domains can be formalized as follows:

- **Observe input** x in input space \mathfrak{X} .
- **2** Take action a in action space A.
- Solution \mathcal{G} Observe outcome y in output space \mathcal{Y} .
- **4** Evaluate action in relation to the outcome: $\ell(a, y)$.

Some Formalization

The Spaces

• \mathfrak{X} : input space • \mathfrak{Y} : output space • \mathcal{A} : action space

Decision Function

A decision function produces an action $a \in A$ for any input $x \in \mathcal{X}$:

$$f: \mathfrak{X} \to \mathcal{A} \ x \mapsto f(x)$$

Loss Function

A loss function evaluates an action in the context of the output y.

$$\ell: \mathcal{A} imes \mathcal{Y} o \mathsf{R}^{\geqslant 0} \ (a, y) \mapsto \ell(a, y)$$

Action Spaces

- \$\mathcal{A} = \{-1, 1\}\$ [hard classification, as used in AdaBoost]
 \$\mathcal{A} = \mathbf{R}\$ [regression or soft classification]
- $\mathcal{A} = \{ \text{Probability distributions a space } \mathcal{Y} \}$

Setup for Statistical Learning Theory

Data Generating Assumption All pairs $(X, Y) \in \mathfrak{X} \times \mathfrak{Y}$ are drawn i.i.d. from some **unknown** $P_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **expected loss** or "**risk**" of a decision function $f : \mathcal{X} \to \mathcal{A}$ is

 $R(f) = \mathbb{E}\ell(f(X), Y),$

where the expectation taken is over $(X, Y) \sim P_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

A Bayes decision function $f^* : \mathcal{X} \to \mathcal{A}$ is a function that achieves the minimal risk (called the Bayes risk) among all possible functions:

$$R(f^*) = \inf_f R(f).$$

David Rosenberg (New York University)

The Empirical Risk Functional

Can we estimate R(f) without knowing $\mathcal{P}_{\mathfrak{X}\times\mathfrak{Y}}$?

Assume we have sample data

Let $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

• The empirical risk of $f: \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i).$$

• A function \hat{f} is an empirical risk minimizer if

$$\hat{R}_n(\hat{f}) = \inf_f \hat{R}_n(f),$$

where the minimum is taken over all functions.

Empirical Risk Minimization

 $P_{\chi} = \text{Uniform}[0, 1], Y \equiv 1 \text{ (i.e. } Y \text{ is always } 1\text{)}.$

Under square loss or 0/1 loss: Empirical Risk = 0. Risk = 1. So unconstrained ERM doesn't work here.

David Rosenberg (New York University)

DS-GA 1003

Constrained Empirical Risk Minimization

- $\bullet\,$ Hypothesis space ${\mathfrak F}$ is a set of functions mapping ${\mathfrak X} \to {\mathcal A}$
- Empirical risk minimizer (ERM) in \mathcal{F} is $\hat{f} \in \mathcal{F}$, where

$$\hat{R}(\hat{f}) = \inf_{f \in \mathcal{F}} \hat{R}(f) = \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).$$

 \bullet Risk minimizer in ${\mathcal F}$ is $f_{{\mathcal F}}^* \in {\mathcal F}$, where

$$R(f_{\mathcal{F}}^*) = \inf_{f \in \mathcal{F}} R(f) = \inf_{f \in \mathcal{F}} \mathbb{E}\ell(f(X), Y)$$

Error Decomposition

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Approximation Error

- \bullet Approximation error is a property of the class ${\mathfrak F}$
- $\bullet\,$ It's our penalty for restricting to ${\mathcal F}$ rather than considering all measurable functions
 - Approximation error is the minimum risk possible with $\ensuremath{\mathfrak{F}}$ (even with infinite training data)
- Bigger \mathcal{F} mean smaller approximation error.

Estimation Error

- *Estimation error*: The performance hit for choosing *f* using finite training data
 - *Equivalently*: It's the hit for not knowing the true risk, but only the empirical risk.
- Smaller \mathcal{F} means smaller estimation error.
- Under typical conditions: 'With infinite training data, estimation error goes to zero.''
 - Infinite training data solves the *statistical* problem, which is not knowing the true risk.]

Optimization Error

- Does unlimited data solve our problems?
- There's still the *algorithmic* problem of *finding* $\hat{f}_n \in \mathcal{F}$.
- For nice choices of loss functions and classes \mathcal{F} , the algorithmic problem can be solved (to any desired accuracy).
 - Takes time! Is it worth it?
- For trees, can't optimize exactly.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then the optimization error is $R(\tilde{f}_n) R(\hat{f}_n)$
- NOTE: May have $R(\tilde{f}_n) < R(\hat{f}_n)$, since \hat{f}_n may overfit more than $\tilde{f}_n!$

Error Decomposition

Definition

The excess risk of f is the amount by which the risk of f exceeds the Bayes risk.

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

= $\underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\operatorname{optimization error}} + \underbrace{R(\hat{f}_n) - R(f^*_{\mathcal{F}})}_{\operatorname{estimation error}} + \underbrace{R(f^*_{\mathcal{F}}) - R(f^*)}_{\operatorname{approximation error}}$

Complexity Measures for Decision Functions

- Depth of a decision tree
- Degree of a polynomial
- How about for linear models?
 - ℓ_0 complexity: number of non-zero coefficients
 - ℓ_1 "lasso" complexity: $\sum_{i=1}^d |w_i|$, for coefficients w_1, \ldots, w_d
 - ℓ_2 "ridge" complexity: $\sum_{i=1}^d w_i^2$ for coefficients w_1, \ldots, w_d

Nested Hypothesis Spaces from Complexity Measure

- Hypothesis space: $\mathcal F$
- Complexity measure $\Omega: \mathcal{F} \to \mathbf{R}^{\geq 0}$
- Consider all functions in \mathcal{F} with complexity at most r:

$$\mathcal{F}_r = \{ f \in \mathcal{F} \mid \Omega(f) \leqslant r \}$$

- If Ω is a norm on \mathcal{F} , this is a **ball of radius** r in \mathcal{F} .
- Increasing complexities: $r = 0, 1.2, 2.6, 5.4, \dots$ gives nested spaces:

$$\mathfrak{F}_0\subset\mathfrak{F}_{1.2}\subset\mathfrak{F}_{2.6}\subset\mathfrak{F}_{5.4}\subset\cdots\subset\mathfrak{F}$$

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega : \mathcal{F} \to \mathbf{R}^{\geq 0}$ and fixed $r \geq 0$,

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

s.t. $\Omega(f) \leq r$

- Choose r using validation data or cross-validation.
- Each r corresponds to a different hypothesis spaces. Could also write:

$$\min_{f\in\mathcal{F}_r}\sum_{i=1}^n \ell(f(x_i), y_i)$$

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega : \mathcal{F} \to \mathbb{R}^{\geq 0}$ and fixed $\lambda \geq 0$,

$$\min_{f\in\mathcal{F}}\sum_{i=1}^{n}\ell(f(x_i),y_i)+\lambda\Omega(f)$$

• Choose λ using validation data or cross-validation.

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter $\lambda \geqslant 0$ is

$$\hat{w} = \underset{w \in \mathbf{R}^d}{\arg\min} \sum_{i=1}^n \{w^T x_i - y_i\}^2 + \lambda \|w\|_2^2,$$

where $\|w\|_2^2 = w_1^2 + \dots + w_d^2$ is the square of the ℓ_2 -norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \operatorname*{arg\,min}_{\|w\|_{2}^{2} \leq r} \sum_{i=1}^{n} \{w^{T} x_{i} - y_{i}\}^{2}.$$

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter $\lambda \geqslant 0$ is

$$\hat{w} = \underset{w \in \mathbf{R}^d}{\arg\min} \sum_{i=1}^n \{w^T x_i - y_i\}^2 + \lambda \|w\|_1,$$

where $||w||_1 = |w_1| + \cdots + |w_d|$ is the ℓ_1 -norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \underset{\|w\|_{1} \leq r}{\arg\min} \sum_{i=1}^{n} \{w^{T} x_{i} - y_{i}\}^{2}.$$

Lasso Gives Feature Sparsity: So What?

- Time/expense to compute/buy features
- Memory to store features (e.g. real-time deployment)
- Identifies the important features
- Better prediction? sometimes
- As a feature-selection step for training a slower non-linear model

Loss Functions for Regression

• Regression losses usually only depend on the residual:

$$r = y - \hat{y}$$
$$(\hat{y}, y) \mapsto \ell(r) = \ell(y - \hat{y})$$

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- Huber Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (robust and differentiable)

KPM Figure 7.6

The Classification Problem: Real-Valued Predictions

- Action space $\mathcal{A} = \mathbf{R}$ Output space $\mathcal{Y} = \{-1, 1\}$
- Prediction function $f: \mathcal{X} \to \mathbf{R}$

Definition

The value f(x) is called the score for the input x. Generally, the magnitude of the score represents the **confidence of our prediction**.

Definition

The margin on an example (x, y) is yf(x). The margin is a measure of how correct we are.

• We want to maximize the margin.

• Most classification losses depend only on the margin.

Classification Losses

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$

Logistic loss is differentiable. Never enough margin for logistic loss. How many support vectors?

David Rosenberg (New York University)

DS-GA 1003

(Soft Margin) Linear Support Vector Machine

- Hypothesis space $\mathcal{F} = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}.$
- Loss $\ell(m) = (1-m)_+$
- ℓ_2 regularization

$$\min_{w \in \mathbf{R}^{d}, b \in \mathbf{R}} \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} (1 - y_{i} [w^{T} x_{i} + b])_{+}.$$

- unconstrained optimization
- not differentiable
- Can we reformulate into a differentiable problem?

SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \ge 0 \text{ for } i = 1, \dots, n$$

$$\xi_i \ge \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

- Differentiable objective function
- A quadratic program that can be solved by any off-the-shelf QP solver.

SVM Dual Problem

Can eliminate the λ variables:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

Constraints are **box constraints**. (Simpler than primal constraints.) • If α^* is a solution to the dual problem, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i.$$

• Since $\alpha_i \in [0, \frac{c}{n}]$, we see that *c* controls the amount of weight we can put on any single example

David Rosenberg (New York University)

The Margin

- For notational convenience, define $f^*(x) = x_i^T w^* + b^*$.
- Margin yf*(x)

- Incorrect classification: $yf^*(x) \leq 0$.
- Margin error: $yf^*(x) < 1$.
- "On the margin": $yf^{*}(x) = 1$.
- "Good side of the margin": $yf^*(x) > 1$.

Complementary Slackness Results: Summary

$$\alpha_i^* = 0 \implies y_i f^*(x_i) \ge 1$$

$$\alpha_i^* \in \left(0, \frac{c}{n}\right) \implies y_i f^*(x_i) = 1$$

$$\alpha_i^* = \frac{c}{n} \implies y_i f^*(x_i) \le 1$$

$$y_i f^*(x_i) < 1 \implies \alpha_i^* = \frac{c}{n}$$
$$y_i f^*(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n}\right]$$
$$y_i f^*(x_i) > 1 \implies \alpha_i^* = 0$$

The Input Space ${\mathfrak X}$

- \bullet Our general learning theory setup: no assumptions about ${\mathfrak X}$
- But $\mathfrak{X} = \mathbf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Linear SVM

Feature Extraction

Definition

Mapping an input from \mathcal{X} to a vector in \mathbf{R}^d is called **feature extraction** or **featurization**.

Raw InputFeature Vector $\mathcal{X} \xrightarrow{\mathcal{X}}$ Feature Extraction $\phi(x)$ \mathcal{R}^d

• e.g. Quadratic feature map: $\mathcal{X} = \mathbf{R}^d$

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T.$$

High-Dimensional Features Good but Expensive

- To get expressive hypothesis spaces using linear models,
 - need high-dimensional feature spaces
- But more costly in terms of computation and memory.

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if inputs only appear inside inner products: $\langle \phi(x), \phi(y) \rangle$ for $x, y \in \mathcal{X}$.

The function

$$k(x,y) = \langle \phi(x), \phi(y) \rangle$$

is called the kernel function.

Kernel Evaluation Can Be Fast

Example

Quadratic feature map

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

has dimension $O(d^2)$, but

$$k(w, x) = \langle \phi(w), \phi(x) \rangle = \langle w, x \rangle + \langle w, x \rangle^{2}$$

- Naively explicit computation of k(w, x): $O(d^2)$
- Implicit computation of k(w, x): O(d)

Recap

- Given a kernelized ML algorithm.
- ② Can swap out the inner product for a new kernel function.
- New kernel may correspond to a high dimensional feature space.
- Computational cost is independent of feature dimension.
 - However, now has a quadratic dependence on the size of the data set.

Ridge Regression

• Recall the ridge regression objective:

$$J(w) = ||Xw - y||^2 + \lambda ||w||^2.$$

• Differentiating and setting equal to zero ,we get

$$(X^T X + \lambda I) w = X^T y$$
Kernelizing Ridge Regression

• So we have, for $\lambda > 0$:

$$(X^{T}X + \lambda I)w = X^{T}y$$
$$w = \frac{1}{\lambda}X^{T}(y - Xw)$$
$$w = X^{T}\alpha$$

for
$$\alpha = \lambda^{-1}(y - Xw) \in \mathbb{R}^n$$
.

• So w is "in the span of the data":

$$w = \begin{pmatrix} | & \cdots & | \\ x_1 & \cdots & x_n \\ | & \cdots & | \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \alpha_1 x_1 + \cdots + \alpha_n x_n$$

Kernelizing Ridge Regression

• So plugging in $w = X^T \alpha$ to

$$\alpha = \lambda^{-1}(y - Xw)$$
$$\lambda \alpha = y - XX^{T} \alpha$$
$$XX^{T} \alpha + \lambda \alpha = y$$
$$(XX^{T} + \lambda I) \alpha = y$$
$$\alpha = (\lambda I + XX^{T})^{-1}y$$

• When can we swap in a new kernel matrix for XX^T ?

Mercer's Theorem

Theorem

A symmetric function k(w, x) can be expressed an inner product

 $k(w, x) = \langle \phi(w), \phi(x) \rangle$

for some ϕ if and only if k(w, x) is **positive semidefinite**.

• If we start with a psd kernel, can we generate more?

The Kernel Matrix (or the Gram Matrix)

Definition

For a set of $\{x_1, \ldots, x_n\}$ and an inner product $\langle \cdot, \cdot \rangle$ on the set, the **kernel** matrix or the **Gram matrix** is defined as

$$K = (\langle x_i, x_j \rangle)_{i,j} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}$$

Then for the standard Euclidean inner product $\langle x_i, x_j \rangle = x_i^T x_j$, we have

$$K = XX^T$$

Trees vs Linear Models

• Trees have to work much harder to capture linear relations.

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

David Rosenberg (New York University)

Comments about Trees

• Trees make no use of geometry

- No inner products or distances
- called a "nonmetric" method
- Feature scale irrelevant
- Predictions are not continuous
 - not so bad for classification
 - may not be desirable for regression

Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models
- Parallel ensembles: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance

• Sequential ensembles:

- Models are generated sequentially
- Try to add new models that do well where previous models lack

Averaging Independent Prediction Functions

- Let Z_1, \ldots, Z_n be independent r.v's with mean μ and variance σ^2 .
- Average has the same expected value but smaller variance:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]=\frac{\sigma^{2}}{n}.$$

- Prediction functions? Suppose we have *B* independent training sets.
- Let $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$ be the prediction models for each set.
- Define the average prediction function as:

$$\hat{f}_{\mathsf{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x).$$

- Variance of average?
- In practice we don't have B independent training sets...
 - Instead, we can use the bootstrap....

The Bootstrap Sample

Definition

A **bootstrap sample** from $\mathcal{D} = \{X_1, \dots, X_n\}$ is a sample of size *n* drawn with replacement from \mathcal{D} .

- $\bullet\,$ In a bootstrap sample, some elements of ${\mathcal D}\,$
 - will show up multiple times,
 - some won't show up at all.
- So we expect ~63.2% of elements of ${\mathcal D}$ will show up at least once.

Bagging

- Suppose we had B bootstrap samples from a training set.
- Bagging estimator given as

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}^{*}(x),$$

where \hat{f}_{b}^{*} is trained on the *b*'th bootstrap sample.

Random Forest

Main idea of random forests

Use **bagged decision trees**, but modify the tree-growing procedure to reduce the correlation between trees.

- Key step in random forests:
 - When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size *m*.
- Typically choose $m \approx \sqrt{p}$, where p is the number of features.
- Can choose *m* using cross validation.

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies

• Final prediction
$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$
.

- The α_m's are nonnegative,
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted \mathcal{D} less well

Adaptive Basis Function Model

- ${\ensuremath{\, \bullet }}$ Hypothesis space ${\ensuremath{\mathcal F}}$
 - Can be classifiers or regression functions
 - These would be the "weak classifiers" or "base classifiers"
- \bullet An adaptive basis function expansion over ${\mathfrak F}$ is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- Each $h_m \in \mathcal{F}$ is chosen in a learning process, and
- v_m are expansion coefficients.
- $\bullet\,$ For example, ${\mathcal F}$ could be all decision trees of depth at most 4.
- We now discuss one approach to fitting such a model.

Forward Stagewise Additive Modeling

- Initialize $f_0(x) = 0$.
- **2** For m = 1 to M:
 - Compute:

$$(\mathbf{v}_m, h_m) = \operatorname*{arg\,min}_{\mathbf{v}\in\mathbf{R}, h\in\mathcal{F}} \sum_{i=1}^n \ell \left\{ y_i, f_{m-1}(x_i) \underbrace{+\mathbf{v}h(x_i)}_{\text{new piece}} \right\}.$$

Exponential Loss and AdaBoost

Take loss function to be

$$\ell(y, f(x)) = \exp\left(-yf(x)\right).$$

• Let $\mathcal{F} = \{h(x) : \mathcal{X} \to \{-1, 1\}\}$ be a hypothesis space of weak classifiers.

- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost.
 - (See HTF Section 10.4 for proof.)

Neural Network

Score is just

score =
$$w_1 h_1 + w_2 h_2$$

= $w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))$

- This is the basic recipe.
 - We can add more hidden nodes.
 - We can add more hidden layers.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

David Rosenberg (New York University)

DS-GA 1003

Neural Network: Hidden Nodes as Learned Features

• Can interpret h_1 and h_2 as nonlinear features learned from data.

DS-GA 1003

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Neural Network: The Hypothesis Space

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer
 - Activation function (but so many to choose from)
- Example neural network hypothesis space:

 $\mathcal{F} = \left\{ f : \mathbf{R}^{d} \to \mathbf{R} \mid f \text{ is a NN with 2 hidden layers, 500 nodes in each} \right\}$

• Functions in \mathcal{F} parameterized by the weights between nodes.

Neural Network: Loss Functions and Learning

- Neural networks give a new hypothesis space.
- But we can use all the same loss functions we've used before.
- Optimization method of choice: stochastic gradient descent.

Neural Network: Objective Function

• In our simple network, the output score is given by

$$f(x) = w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))$$

• Objective with square loss is then

$$J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2$$

• Note: J(w, v) is not convex.

- makes optimization much more difficult
- accounts for many of the "tricks of the trade"

Learning with Back-Propagation

- Back-propagation is an algorithm for computing the SGD gradient
- Mathematically, it's not necessary.
- With lots of chain rule, you can work out the gradient by hand.
- Back-propagation is
 - a clean way to organize the computation of the gradient
 - an efficient way to compute the gradient

Likelihood of a Predicted Distribution

Suppose we have

 $\mathcal{D} = \{y_1, \dots, y_n\}$ sampled i.i.d. from p(y).

• Then the likelihood of \hat{p} for the data \mathcal{D} is defined to be

$$\hat{p}(\mathcal{D}) = \prod_{i=1}^{n} \hat{p}(y_i)$$

We'll write this as

$$L_{\mathcal{D}}(\hat{\boldsymbol{\rho}}) \coloneqq \hat{\boldsymbol{\rho}}(\mathcal{D})$$

- Special case: If \hat{p} is a probability mass function, then
 - $L_{\mathcal{D}}(\hat{p})$ is the probability of \mathcal{D} under \hat{p} .

Probability Estimation as Statistical Learning

- Output space \mathcal{Y} (containing observations from distribution P)
- Action space
 A = {p(y) | p is a probability density or mass function on 𝔅}.
- How to encode our objective of "high likelihood" as a loss function?
- Define loss function as the negative log-likelihood of y under $p(\cdot)$:

$$\begin{array}{rccc} \ell : & \mathcal{A} \times \mathcal{Y} & \to & \mathsf{R} \\ & & (p, y) & \mapsto & -\log p(y) \end{array}$$

Generalized Regression as Statistical Learning

- \bullet Input space ${\mathcal X}$
- Output space \mathcal{Y}
- All pairs (X, Y) are independent with distribution $P_{\mathfrak{X} \times \mathfrak{Y}}$.
- Action space $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}.$
- Hypothesis spaces comprise decision functions $f : \mathcal{X} \to \mathcal{A}$.
 - Given an $x \in \mathcal{X}$, predict a probability distribution p(y) on \mathcal{Y} .
- Loss function as before:

$$\begin{array}{rccc} \ell \colon & \mathcal{A} \times \mathcal{Y} & \to & \mathsf{R} \\ & & (p, y) & \mapsto & -\log p(y) \end{array}$$

• ERM gives MLE.

Generalized Regression as Statistical Learning

• The risk of decision function $f: \mathcal{X} \to \mathcal{A}$

$$R(f) = -\mathbb{E}_{X,Y} \log \left[f(X) \right] (Y),$$

where f(X) is a PDF or PMF on \mathcal{Y} , and we're evaluating it on Y.

• The empirical risk of f for a sample $\mathcal{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\sum_{i=1}^{n} \log [f(x_i)](y_i).$$

This is called the negative **conditional log-likelihood**.

Linear Probabilistic Classifiers

• Setting:
$$\mathfrak{X} = \mathbf{R}^d$$
, $\mathfrak{Y} = \{0, 1\}$

- For each X = x, p(Y = 1 | x) = θ. (i.e. Y has a Bernoulli(θ) distribution)
- θ may vary with x.
- For each $x \in \mathbf{R}^d$, just want to predict $\theta \in [0, 1]$.

Two steps:

$$\underbrace{x}_{\in \mathbf{R}^{D}} \mapsto \underbrace{w^{T} x}_{\in \mathbf{R}} \mapsto \underbrace{f(w^{T} x)}_{\in [0,1]},$$

where $f : \mathbf{R} \rightarrow [0, 1]$ is called the **transfer** or **inverse link** function.

• Probability model is then

$$p(Y=1 \mid x) = f(w^T x)$$

Inverse Link Functions

• Two commonly used "inverse link" functions to map from $w^T x$ to θ :

- Logistic function \implies Logistic Regression
- Normal CDF \implies Probit Regression

Specifying a Natural Exponential Family

The family is a natural exponential family with parameter θ if

$$p_{\theta}(y) = \frac{1}{Z(\theta)} h(y) \exp \left[\theta^T y\right].$$

- To specify a natural exponential family, we need to choose h(y).
 - Everything else is determined.
- Implicit in choosing *h*(*y*) is the choice of the support of the distribution.

Natural Exponential Families: Examples

The following are univariate natural exponential families:

- Normal distribution with known variance.
- Poisson distribution
- Samma distribution (with known k parameter)
- Bernoulli distribution (and Binomial with known number of trials)

Generalized Linear Models [with Canonical Link]

- In GLMs, we first choose a natural exponential family.
 - (This amounts to choosing h(y).)
- The idea is to plug in $w^T x$ for the natural parameter.
- This gives models of the following form:

$$p_{\theta}(y \mid x) = \frac{1}{Z(w^{T}x)} h(y) \exp\left[(w^{T}x)y\right].$$

• This is the form we had for Poisson regression.

Generalized Linear Models [with General Link]

 $\bullet\,$ More generally, choose a function ψ so that

$$x \mapsto w^T x \mapsto \psi(w^T x),$$

where $\theta = \psi(w^T x)$ is the natural parameter for the family.

• So our final prediction (for one-parameter families) is:

$$p_{\theta}(y \mid x) = \frac{1}{Z(\psi(w^T x))} h(y) \exp\left[\psi(w^T x)y\right].$$

Gradient Descent

Gradient Descent

- Initialize x = 0
- repeat

•
$$x \leftarrow x - \underbrace{\eta}_{\text{step size}} \nabla f(x)$$

• until stopping criterion satisfied

Gradient Descent: Does it scale?

• At every iteration, we compute the gradient at current w:

$$\nabla_{w}\hat{R}_{n}(w) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{\left(w^{T} x_{i} - y_{i}\right)}_{i \text{th residual}} x_{i}$$

• We have to touch all n training points to take a single step. [O(n)]

- Called a batch optimization method
- Can we make progress without looking at all the data?

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize w = 0
- repeat
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$
 - $w \leftarrow w \eta$ Grad(Loss on i'th example)
- until stopping criteria met

How to find the Lasso solution?

• How to solve the Lasso?

$$\min_{w \in \mathbf{R}^d} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 + \lambda |w|_1$$

• $|w|_1$ is not differentiable!

The Lasso as a Quadratic Program

• Substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$, Lasso problem is:

$$\min_{w^+,w^- \in \mathbf{R}^d} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i
 $w_i^- \ge 0$ for all i

- Objective is differentiable (in fact, convex and quadratic)
- 2d variables vs d variables
- 2d constraints vs no constraints
- A "quadratic program": a convex quadratic objective with linear constraints.
 - Could plug this into a generic QP solver.
Projected SGD

$$\min_{w^+,w^- \in \mathbf{R}^d} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i
 $w_i^- \ge 0$ for all i

Solution:

- Take a stochastic gradient step
- "Project" w^+ and w^- into the constraint set
 - In other words, any component of w^+ or w^- is negative, make it 0.
- Note: Sparsity pattern may change frequently as we iterate

Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \dots, w_d)$ over $w = (w_1, \dots, w_d) \in \mathbb{R}^d$.

- Initialize $w^{(0)} = 0$
- while not converged:

• Choose a coordinate
$$j \in \{1, \ldots, d\}$$

• $w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \ldots, w_{j-1}^{(t)}, \mathbf{w_j}, w_{j+1}^{(t)}, \ldots, w_d^{(t)})$
• $w_j^{(t+1)} \leftarrow w^{(t)}$
• $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$
• $t \leftarrow t+1$

- For when it's easier to minimize w.r.t. one coordinate at a time
- Random coordinate choice ⇒ stochastic coordinate descent
- Cyclic coordinate choice \implies cyclic coordinate descent

Coordinate Descent Method for Lasso

- Why mention coordinate descent for Lasso?
- In Lasso, the coordinate minimization has a closed form solution!

The Lagrangian

Recall the general optimization problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leqslant 0, \ i = 1, \dots, m \\ & h_i(x) = 0, \ i = 1, \dots p, \end{array}$$

Definition

The Lagrangian for the general optimization problem is

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x),$$

- $\lambda_i{}'s$ and $\nu{}'s$ are called Lagrange multipliers
- λ and ν also called the dual variables .

Lagrangian Methods

The Primal and the Dual

• Original optimization problem in primal form:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0, \nu} \inf_{x} L(x, \lambda, \nu)$$

• We showed weak duality: $p^* \ge d^*$ for any optimization problem

Lagrangian Methods

Convex and Concave Functions

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \text{dom } f$, and $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$$

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$
 $a_i^T x = b_i, i = 1, ..., p$

where f_0, \ldots, f_m are convex functions.

Note: Equality constraints are now linear. Why? [otherwise feasible set won't be convex]

Slater's Constraint Qualifications for Strong Duality

- Sufficient conditions for strong duality in a convex problem.
- Roughly: the problem must be strictly feasible.
- The domain D ⊂ Rⁿ of an optimization problem is the set on which all the functions are defined.
 - i.e. f_0, f_1, \ldots, f_m are all defined.
 - $\bullet\,$ the domain ${\mathfrak D}\,$ is NOT the feasible set.
- Qualifications when problem domain $\mathcal{D} \subset \mathbf{R}^n$ is an open set:
 - $\exists x \text{ such that } Ax = b \text{ and } f_i(x) < 0 \text{ for } i = 1, \dots, m$
 - For any affine inequality constraints, $f_i(x) \leq 0$ is sufficient

Complementary Slackness

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have strong duality, we get an interesting relationship between
 - the optimal Lagrange multiplier λ_i and
 - the *i*th constraint at the optimum: $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

• Lagrange multiplier is zero unless the constraint is active at the optimum.