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Statistical Learning Theory Overview

Typical Sequence of Events at Deployment Time

Many problem domains can be formalized as follows:
1 Observe input x in input space X.
2 Take action a in action space A.
3 Observe outcome y in output space Y.
4 Evaluate action in relation to the outcome: `(a,y).
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Statistical Learning Theory Overview

Some Formalization

The Spaces

X: input space Y: output space A: action space

Decision Function
A decision function produces an action a ∈A for any input x ∈ X:

f : X → A

x 7→ f (x)

Loss Function
A loss function evaluates an action in the context of the output y .

` : A×Y → R>0

(a,y) 7→ `(a,y)
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Statistical Learning Theory Overview

Action Spaces

A= {−1,1} [hard classification, as used in AdaBoost]
A= R [regression or soft classification]

A={Probability distributions a space Y}
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Statistical Learning Theory Overview

Setup for Statistical Learning Theory

Data Generating Assumption

All pairs (X ,Y ) ∈ X×Y are drawn i.i.d. from some unknown PX×Y.

Definition
The expected loss or “risk” of a decision function f : X→A is

R(f ) = E`(f (X ),Y ),

where the expectation taken is over (X ,Y ) ∼ PX×Y.

Definition
A Bayes decision function f ∗ : X→A is a function that achieves the
minimal risk (called the Bayes risk) among all possible functions:

R(f ∗) = inf
f
R(f ).
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Statistical Learning Theory Overview

The Empirical Risk Functional

Can we estimate R(f ) without knowing PX×Y?

Assume we have sample data

Let Dn = {(X1,Y1), . . . ,(Xn,Yn)} be drawn i.i.d. from PX×Y.

The empirical risk of f : X→A with respect to Dn is

R̂n(f ) =
1
n

n∑
i=1

`(f (Xi ),Yi ).

A function f̂ is an empirical risk minimizer if

R̂n(f̂ ) = inf
f
R̂n(f ),

where the minimum is taken over all functions.
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Statistical Learning Theory Overview

Empirical Risk Minimization

PX = Uniform[0,1], Y ≡ 1 (i.e. Y is always 1).
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Under square loss or 0/1 loss: Empirical Risk = 0. Risk = 1.
So unconstrained ERM doesn’t work here.
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Statistical Learning Theory Overview

Constrained Empirical Risk Minimization

Hypothesis space F is a set of functions mapping X→A

Empirical risk minimizer (ERM) in F is f̂ ∈ F, where

R̂(f̂ ) = inf
f∈F

R̂(f ) = inf
f∈F

1
n

n∑
i=1

`(f (Xi ),Yi ).

Risk minimizer in F is f ∗F ∈ F , where

R(f ∗F) = inf
f∈F

R(f ) = inf
f∈F

E`(f (X ),Y )
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Statistical Learning Theory Overview

Error Decomposition

f ∗ =argmin
f

E`(f (X ),Y )

fF =argmin
f∈F

E`(f (X ),Y ))

f̂n =argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

Approximation Error (of F) = R(fF)−R(f ∗)

Estimation error (of f̂n in F) = R(f̂n)−R(fF)

David Rosenberg (New York University) DS-GA 1003 April 4, 2015 9 / 81



Statistical Learning Theory Overview

Approximation Error

Approximation error is a property of the class F
It’s our penalty for restricting to F rather than considering all
measurable functions

Approximation error is the minimum risk possible with F (even with
infinite training data)

Bigger F mean smaller approximation error.

David Rosenberg (New York University) DS-GA 1003 April 4, 2015 10 / 81



Statistical Learning Theory Overview

Estimation Error

Estimation error: The performance hit for choosing f using finite
training data

Equivalently: It’s the hit for not knowing the true risk, but only the
empirical risk.

Smaller F means smaller estimation error.
Under typical conditions: “With infinite training data, estimation error
goes to zero.”

Infinite training data solves the statistical problem, which is not
knowing the true risk.]
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Statistical Learning Theory Overview

Optimization Error

Does unlimited data solve our problems?
There’s still the algorithmic problem of finding f̂n ∈ F.
For nice choices of loss functions and classes F, the algorithmic
problem can be solved (to any desired accuracy).

Takes time! Is it worth it?

For trees, can’t optimize exactly.
Optimization error: If f̃n is the function our optimization method
returns, and f̂n is the empirical risk minimizer, then the optimization
error is R(f̃n)−R(f̂n)

NOTE: May have R(f̃n)< R(f̂n), since f̂n may overfit more than f̃n!
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Statistical Learning Theory Overview

Error Decomposition

Definition
The excess risk of f is the amount by which the risk of f exceeds the
Bayes risk.

Excess Risk(f̃n) = R(f̃n)−R(f ∗)

= R(f̃n)−R(f̂n)︸ ︷︷ ︸
optimization error

+R(f̂n)−R(f ∗F)︸ ︷︷ ︸
estimation error

+ R(f ∗F)−R(f ∗)︸ ︷︷ ︸
approximation error
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Hypothesis Spaces and Complexity Control

Complexity Measures for Decision Functions

Depth of a decision tree
Degree of a polynomial
How about for linear models?

`0 complexity: number of non-zero coefficients
`1 “lasso” complexity:

∑d
i=1 |wi |, for coefficients w1, . . . ,wd

`2 “ridge” complexity:
∑d

i=1w
2
i for coefficients w1, . . . ,wd
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Hypothesis Spaces and Complexity Control

Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F
Complexity measure Ω : F→ R>0

Consider all functions in F with complexity at most r :

Fr = {f ∈ F |Ω(f )6 r }

If Ω is a norm on F, this is a ball of radius r in F.

Increasing complexities: r = 0,1.2,2.6,5.4, . . . gives nested spaces:

F0 ⊂ F1.2 ⊂ F2.6 ⊂ F5.4 ⊂ ·· · ⊂ F
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Hypothesis Spaces and Complexity Control

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ R>0 and fixed r > 0,

min
f∈F

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Choose r using validation data or cross-validation.
Each r corresponds to a different hypothesis spaces. Could also write:

min
f∈Fr

n∑
i=1

`(f (xi ),yi )
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Hypothesis Spaces and Complexity Control

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ R>0 and fixed λ> 0,

min
f∈F

n∑
i=1

`(f (xi ),yi )+λΩ(f )

Choose λ using validation data or cross-validation.
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Ridge and Lasso Regression

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖226r

n∑
i=1

{
wT xi − yi

}2
.
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Ridge and Lasso Regression

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

n∑
i=1

{
wT xi − yi

}2
.
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Ridge and Lasso Regression

Lasso Gives Feature Sparsity: So What?

Time/expense to compute/buy features
Memory to store features (e.g. real-time deployment)
Identifies the important features
Better prediction? sometimes
As a feature-selection step for training a slower non-linear model
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Loss Functions

Loss Functions for Regression

Regression losses usually only depend on the residual:

r = y − ŷ

(ŷ ,y) 7→ `(r) = `(y − ŷ)
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Loss Functions

Some Losses for Regression

Square or `2 Loss: `(r) = r2 (not robust)
Absolute or Laplace or `1 Loss: `(r) = |r | (not differentiable)

gives median regression

Huber Loss: Quadratic for |r |6 δ and linear for |r |> δ (robust and
differentiable)
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Loss Functions

The Classification Problem: Real-Valued Predictions

Action space A= R Output space Y= {−1,1}
Prediction function f : X→ R

Definition
The value f (x) is called the score for the input x . Generally, the
magnitude of the score represents the confidence of our prediction.

Definition
The margin on an example (x ,y) is yf (x). The margin is a measure of
how correct we are.

We want to maximize the margin.
Most classification losses depend only on the margin.
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Loss Functions

Classification Losses

Logistic/Log loss: `Logistic = log (1+ e−m)

Logistic loss is differentiable. Never enough margin for logistic loss.
How many support vectors?
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Loss Functions

(Soft Margin) Linear Support Vector Machine

Hypothesis space F =
{
f (x) = wT x | w ∈ Rd

}
.

Loss `(m) = (1−m)+
`2 regularization

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

(
1− yi

[
wT xi +b

])
+
.

unconstrained optimization
not differentiable
Can we reformulate into a differentiable problem?
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Loss Functions

SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi > 0 for i = 1, . . . ,n
ξi >

(
1− yi

[
wT xi +b

])
for i = 1, . . . ,n

Differentiable objective function
A quadratic program that can be solved by any off-the-shelf QP solver.

David Rosenberg (New York University) DS-GA 1003 April 4, 2015 26 / 81



Loss Functions

SVM Dual Problem

Can eliminate the λ variables:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Constraints are box constraints. (Simpler than primal constraints.)
If α∗ is a solution to the dual problem, then

w∗ =
n∑

i=1

α∗i yixi .

Since αi ∈ [0, cn ], we see that c controls the amount of weight we can
put on any single example
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Loss Functions

The Margin

For notational convenience, define f ∗(x) = xTi w∗+b∗.
Margin yf ∗(x)

Incorrect classification: yf ∗(x)6 0.
Margin error: yf ∗(x)< 1.
“On the margin”: yf ∗(x) = 1.
“Good side of the margin”: yf ∗(x)> 1.
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Loss Functions

Complementary Slackness Results: Summary

α∗i = 0 =⇒ yi f
∗(xi )> 1

α∗i ∈
(
0,
c

n

)
=⇒ yi f

∗(xi ) = 1

α∗i =
c

n
=⇒ yi f

∗(xi )6 1

yi f
∗(xi )< 1 =⇒ α∗i =

c

n

yi f
∗(xi ) = 1 =⇒ α∗i ∈

[
0,
c

n

]
yi f
∗(xi )> 1 =⇒ α∗i = 0
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Kernelization

The Input Space X

Our general learning theory setup: no assumptions about X
But X= Rd for the specific methods we’ve developed:

Ridge regression
Lasso regression
Linear SVM
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Kernelization

Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or
featurization.

e.g. Quadratic feature map: X= Rd

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T .
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Kernelization

High-Dimensional Features Good but Expensive

To get expressive hypothesis spaces using linear models,

need high-dimensional feature spaces

But more costly in terms of computation and memory.
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Kernelization

Some Methods Can Be “Kernelized”

Definition
A method is kernelized if inputs only appear inside inner products:
〈φ(x),φ(y)〉 for x ,y ∈ X.

The function
k(x ,y) = 〈φ(x),φ(y)〉

is called the kernel function.
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Kernelization

Kernel Evaluation Can Be Fast

Example
Quadratic feature map

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

has dimension O(d2), but

k(w ,x) = 〈φ(w),φ(x)〉= 〈w ,x〉+ 〈w ,x〉2

Naively explicit computation of k(w ,x): O(d2)

Implicit computation of k(w ,x): O(d)
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Kernelization

Recap

1 Given a kernelized ML algorithm.
2 Can swap out the inner product for a new kernel function.
3 New kernel may correspond to a high dimensional feature space.
4 Computational cost is independent of feature dimension.

1 However, now has a quadratic dependence on the size of the data set.
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Kernelization

Ridge Regression

Recall the ridge regression objective:

J(w) = ||Xw − y ||2+λ||w ||2.

Differentiating and setting equal to zero ,we get(
XTX +λI

)
w = XT y
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Kernelization

Kernelizing Ridge Regression

So we have, for λ > 0:

(XTX +λI )w = XT y

w =
1
λ
XT (y −Xw)

w = XTα

for α= λ−1(y −Xw) ∈ Rn.
So w is “ in the span of the data”:

w =

 | · · · |

x1 · · · xn
| · · · |


α1

...
αn

= α1x1+ · · ·αnxn
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Kernelization

Kernelizing Ridge Regression

So plugging in w = XTα to

α = λ−1(y −Xw)

λα = y −XXTα

XXTα+λα = y(
XXT +λI

)
α = y

α = (λI +XXT )−1y

When can we swap in a new kernel matrix for XXT ?
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Kernelization

Mercer’s Theorem

Theorem
A symmetric function k(w ,x) can be expressed an inner product

k(w ,x) = 〈φ(w),φ(x)〉

for some φ if and only if k(w ,x) is positive semidefinite.

If we start with a psd kernel, can we generate more?
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Kernelization

The Kernel Matrix (or the Gram Matrix)

Definition
For a set of {x1, . . . ,xn} and an inner product 〈·, ·〉on the set, the kernel
matrix or the Gram matrix is defined as

K =
(
〈xi ,xj〉

)
i ,j

=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 .

Then for the standard Euclidean inner product 〈xi ,xj〉= xTi xj , we have

K = XXT
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Trees

Trees vs Linear Models

Trees have to work much harder to capture linear relations.
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Trees

Comments about Trees

Trees make no use of geometry
No inner products or distances
called a “nonmetric” method
Feature scale irrelevant

Predictions are not continuous

not so bad for classification
may not be desirable for regression

David Rosenberg (New York University) DS-GA 1003 April 4, 2015 42 / 81



Ensemble Methods

Ensembles: Parallel vs Sequential

Ensemble methods combine multiple models
Parallel ensembles: each model is built independently

e.g. bagging and random forests
Main Idea: Combine many (high complexity, low bias) models to
reduce variance

Sequential ensembles:
Models are generated sequentially
Try to add new models that do well where previous models lack
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Ensemble Methods

Averaging Independent Prediction Functions

Let Z1, . . . ,Zn be independent r.v’s with mean µ and variance σ2.
Average has the same expected value but smaller variance:

E

[
1
n

n∑
i=1

Zi

]
= µ Var

[
1
n

n∑
i=1

Zi

]
=
σ2

n
.

Prediction functions? Suppose we have B independent training sets.
Let f̂1(x), f̂2(x), . . . , f̂B(x) be the prediction models for each set.
Define the average prediction function as:

f̂avg(x) =
1
B

B∑
b=1

f̂b(x).

Variance of average?
In practice we don’t have B independent training sets...

Instead, we can use the bootstrap....
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Ensemble Methods

The Bootstrap Sample

Definition
A bootstrap sample from D= {X1, . . . ,Xn} is a sample of size n drawn
with replacement from D.

In a bootstrap sample, some elements of D

will show up multiple times,
some won’t show up at all.

So we expect ~63.2% of elements of D will show up at least once.
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Ensemble Methods

Bagging

Suppose we had B bootstrap samples from a training set.
Bagging estimator given as

f̂bag(x) =
1
B

B∑
b=1

f̂ ∗b (x),

where f̂ ∗b is trained on the b’th bootstrap sample.
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Ensemble Methods

Random Forest

Main idea of random forests

Use bagged decision trees, but modify the tree-growing procedure to
reduce the correlation between trees.

Key step in random forests:

When constructing each tree node, restrict choice of splitting variable
to a randomly chosen subset of features of size m.

Typically choose m ≈√p, where p is the number of features.
Can choose m using cross validation.
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Ensemble Methods

AdaBoost - Rough Sketch

Training set D= {(x1,y1) , . . . ,(xn,yn)}.
Start with equal weight on all training points w1 = · · ·= wn = 1.
Repeat for m = 1, . . . ,M:

Fit weak classifier Gm(x) to weighted training points
Increase weight on points Gm(x) misclassifies

Final prediction G (x) = sign
[∑M

m=1αmGm(x)
]
.

The αm’s are nonnegative,

larger when Gm fits its weighted D well
smaller when Gm fits weighted D less well
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Ensemble Methods

Adaptive Basis Function Model

Hypothesis space F

Can be classifiers or regression functions
These would be the “weak classifiers” or “base classifiers”

An adaptive basis function expansion over F is

f (x) =
M∑

m=1

νmhm(x),

Each hm ∈ F is chosen in a learning process, and
νm are expansion coefficients.

For example, F could be all decision trees of depth at most 4.
We now discuss one approach to fitting such a model.
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Ensemble Methods

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(νm,hm) = argmin
ν∈R,h∈F

n∑
i=1

`

yi , fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm(x) = fm−1(x)+νmh(x).

3 Return: fM(x).
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Ensemble Methods

Exponential Loss and AdaBoost

Take loss function to be

`(y , f (x)) = exp(−yf (x)) .

Let F = {h(x) : X→ {−1,1}} be a hypothesis space of weak classifiers.
Then Forward Stagewise Additive Modeling (FSAM) reduces to
AdaBoost.

(See HTF Section 10.4 for proof.)
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Neural Networks

Neural Network

Score is just

score = w1h1+w2h2

= w1σ(v
T
1 φ(x))+w2σ

(
vT2 φ(x)

)
This is the basic recipe.

We can add more hidden nodes.
We can add more hidden layers.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Neural Networks

Neural Network: Hidden Nodes as Learned Features

Can interpret h1 and h2 as nonlinear features learned from data.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Neural Networks

Neural Network: The Hypothesis Space

What hyperparameters describe a neural network?

Number of layers
Number of nodes in each hidden layer
Activation function (but so many to choose from)

Example neural network hypothesis space:

F =
{
f : Rd → R | f is a NN with 2 hidden layers, 500 nodes in each

}
Functions in F parameterized by the weights between nodes.
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Neural Networks

Neural Network: Loss Functions and Learning

Neural networks give a new hypothesis space.
But we can use all the same loss functions we’ve used before.
Optimization method of choice: stochastic gradient descent.
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Neural Networks

Neural Network: Objective Function

In our simple network, the output score is given by

f (x) = w1σ(v
T
1 φ(x))+w2σ

(
vT2 φ(x)

)
Objective with square loss is then

J(w ,v) =
n∑

i=1

(yi − fw ,v (xi ))
2

Note: J(w ,v) is not convex.
makes optimization much more difficult
accounts for many of the “tricks of the trade”
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Neural Networks

Learning with Back-Propagation

Back-propagation is an algorithm for computing the SGD gradient
Mathematically, it’s not necessary.
With lots of chain rule, you can work out the gradient by hand.
Back-propagation is

a clean way to organize the computation of the gradient
an efficient way to compute the gradient
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Predicting Distributions

Likelihood of a Predicted Distribution

Suppose we have

D= {y1, . . . ,yn} sampled i.i.d. from p(y).

Then the likelihood of p̂ for the data D is defined to be

p̂(D) =

n∏
i=1

p̂(yi ).

We’ll write this as
LD(p̂) := p̂(D)

Special case: If p̂ is a probability mass function, then

LD(p̂) is the probability of D under p̂.
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Predicting Distributions

Probability Estimation as Statistical Learning

Output space Y (containing observations from distribution P)
Action space
A= {p(y) | p is a probability density or mass function on Y}.
How to encode our objective of “high likelihood” as a loss function?

Define loss function as the negative log-likelihood of y under p(·):

` : A×Y → R
(p,y) 7→ − logp(y)
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Predicting Distributions

Generalized Regression as Statistical Learning

Input space X

Output space Y

All pairs (X ,Y ) are independent with distribution PX×Y.
Action space
A= {p(y) | p is a probability density or mass function on Y}.
Hypothesis spaces comprise decision functions f : X→A.

Given an x ∈ X, predict a probability distribution p(y) on Y.

Loss function as before:

` : A×Y → R
(p,y) 7→ − logp(y)

ERM gives MLE.
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Predicting Distributions

Generalized Regression as Statistical Learning

The risk of decision function f : X→A

R(f ) = −EX ,Y log [f (X )] (Y ),

where f (X ) is a PDF or PMF on Y, and we’re evaluating it on Y .

The empirical risk of f for a sample D= {y1, . . . ,yn} ∈ Y is

R̂(f ) = −

n∑
i=1

log [f (xi )] (yi ).

This is called the negative conditional log-likelihood.
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Predicting Distributions

Linear Probabilistic Classifiers

Setting: X= Rd , Y= {0,1}
For each X = x , p(Y = 1 | x) = θ. (i.e. Y has a Bernoulli(θ)
distribution)
θ may vary with x .
For each x ∈ Rd , just want to predict θ ∈ [0,1].
Two steps:

x︸︷︷︸
∈RD

7→ wT x︸︷︷︸
∈R

7→ f (wT x)︸ ︷︷ ︸
∈[0,1]

,

where f : R→ [0,1] is called the transfer or inverse link function.
Probability model is then

p(Y = 1 | x) = f (wT x)
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Predicting Distributions

Inverse Link Functions

Two commonly used “inverse link” functions to map from wT x to θ:
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Logistic function =⇒ Logistic Regression
Normal CDF =⇒ Probit Regression
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Generalized Linear Models

Specifying a Natural Exponential Family

The family is a natural exponential family with parameter θ if

pθ(y) =
1

Z (θ)
h(y)exp

[
θT y

]
.

To specify a natural exponential family, we need to choose h(y).

Everything else is determined.

Implicit in choosing h(y) is the choice of the support of the
distribution.
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Generalized Linear Models

Natural Exponential Families: Examples

The following are univariate natural exponential families:
1 Normal distribution with known variance.
2 Poisson distribution
3 Gamma distribution (with known k parameter)
4 Bernoulli distribution (and Binomial with known number of trials)
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Generalized Linear Models

Generalized Linear Models [with Canonical Link]

In GLMs, we first choose a natural exponential family.

(This amounts to choosing h(y).)

The idea is to plug in wT x for the natural parameter.
This gives models of the following form:

pθ(y | x) =
1

Z (wT x)
h(y)exp

[
(wT x)y

]
.

This is the form we had for Poisson regression.
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Generalized Linear Models

Generalized Linear Models [with General Link]

More generally, choose a function ψ so that

x 7→ wT x 7→ψ(wT x),

where θ=ψ(wT x) is the natural parameter for the family.
So our final prediction (for one-parameter families) is:

pθ(y | x) =
1

Z (ψ(wT x))
h(y)exp

[
ψ(wT x)y

]
.
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Optimization

Gradient Descent

Gradient Descent
Initialize x = 0
repeat

x ← x − η︸︷︷︸
step size

∇f (x)

until stopping criterion satisfied
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Optimization

Gradient Descent: Does it scale?

At every iteration, we compute the gradient at current w :

∇w R̂n(w) =
2
n

n∑
i=1

(
wT xi − yi

)︸ ︷︷ ︸
ith residual

xi

We have to touch all n training points to take a single step. [O(n)]

Called a batch optimization method

Can we make progress without looking at all the data?
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Optimization

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent
initialize w = 0
repeat

randomly choose training point (xi ,yi ) ∈Dn

w ← w −η ∇w `(fw (xi ),yi )︸ ︷︷ ︸
Grad(Loss on i’th example)

until stopping criteria met
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Optimization

How to find the Lasso solution?

How to solve the Lasso?

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

|w |1 is not differentiable!
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Optimization

The Lasso as a Quadratic Program

Substituting w = w+−w− and |w |= w++w−, Lasso problem is:

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ
(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Objective is differentiable (in fact, convex and quadratic)
2d variables vs d variables
2d constraints vs no constraints
A “quadratic program”: a convex quadratic objective with linear
constraints.

Could plug this into a generic QP solver.
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Optimization

Projected SGD

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ
(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Solution:

Take a stochastic gradient step
“Project” w+ and w− into the constraint set

In other words, any component of w+ or w− is negative, make it 0 .

Note: Sparsity pattern may change frequently as we iterate
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Optimization

Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . .wd) over w = (w1, . . . ,wd) ∈ Rd .
Initialize w (0) = 0
while not converged:

Choose a coordinate j ∈ {1, . . . ,d}
wnew
j ← argminwj

L(w
(t)
1 , . . . ,w

(t)
j−1,wj,w

(t)
j+1, . . . ,w

(t)
d )

w (t+1)← w (t)

w
(t+1)
j ← wnew

j
t← t+1

For when it’s easier to minimize w.r.t. one coordinate at a time
Random coordinate choice =⇒ stochastic coordinate descent
Cyclic coordinate choice =⇒ cyclic coordinate descent
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Optimization

Coordinate Descent Method for Lasso

Why mention coordinate descent for Lasso?
In Lasso, the coordinate minimization has a closed form solution!
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Optimization Lagrangian Methods

The Lagrangian

Recall the general optimization problem:

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . .p,

Definition
The Lagrangian for the general optimization problem is

L(x ,λ,ν) = f0(x)+
m∑
I=1

λi fi (x)+

p∑
i=1

νihi (x),

λi ’s and ν’s are called Lagrange multipliers
λ and ν also called the dual variables .
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Optimization Lagrangian Methods

The Primal and the Dual

Original optimization problem in primal form:

p∗ = inf
x

sup
λ�0,ν

L(x ,λ,ν)

The Lagrangian dual problem:

d∗ = sup
λ�0,ν

inf
x
L(x ,λ,ν)

We showed weak duality: p∗ > d∗ for any optimization problem
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Optimization Lagrangian Methods

Convex and Concave Functions

Definition
A function f : Rn→ R is convex if dom f is a convex set and if for all
x ,y ∈ dom f , and 06 θ6 1, we have

f (θx +(1−θ)y)6 θf (x)+(1−θ)f (y).

x y

λ
1 − λ

A B

KPM Fig. 7.5
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Optimization Lagrangian Methods

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m
aTi x = bi , i = 1, . . .p

where f0, . . . , fm are convex functions.
Note: Equality constraints are now linear. Why? [otherwise feasible set
won’t be convex]
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Optimization Lagrangian Methods

Slater’s Constraint Qualifications for Strong Duality

Sufficient conditions for strong duality in a convex problem.
Roughly: the problem must be strictly feasible.
The domain D⊂ Rn of an optimization problem is the set on which all
the functions are defined.

i.e. f0, f1, . . . , fm are all defined.
the domain D is NOT the feasible set.

Qualifications when problem domain D⊂ Rn is an open set:

∃x such that Ax = b and fi (x)< 0 for i = 1, . . . ,m
For any affine inequality constraints, fi (x)6 0 is sufficient
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Optimization Lagrangian Methods

Complementary Slackness

Consider a general optimization problem (i.e. not necessarily convex).
If we have strong duality, we get an interesting relationship between

the optimal Lagrange multiplier λi and
the ith constraint at the optimum: fi (x∗)

Relationship is called “complementary slackness”:

λ∗i fi (x
∗) = 0

Lagrange multiplier is zero unless the constraint is active at the
optimum.
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