Midterm Review

David Rosenberg

New York University

April 4, 2015
Typical Sequence of Events at Deployment Time

Many problem domains can be formalized as follows:

1. Observe input x in input space \mathcal{X}.
2. Take action a in action space \mathcal{A}.
3. Observe outcome y in output space \mathcal{Y}.
4. Evaluate action in relation to the outcome: $\ell(a, y)$.
Some Formalization

The Spaces

- \(X \): input space
- \(Y \): output space
- \(A \): action space

Decision Function

A **decision function** produces an action \(a \in A \) for any input \(x \in X \):

\[
f : X \rightarrow A \\
x \mapsto f(x)
\]

Loss Function

A **loss function** evaluates an action in the context of the output \(y \).

\[
l : A \times Y \rightarrow \mathbb{R}^{\geq 0} \\
(a, y) \mapsto l(a, y)
\]
Action Spaces

- $\mathcal{A} = \{-1, 1\}$ [hard classification, as used in AdaBoost]
- $\mathcal{A} = \mathbb{R}$ [regression or soft classification]
- $\mathcal{A} = \{$Probability distributions a space $\mathcal{Y}\}$
Setup for Statistical Learning Theory

Data Generating Assumption
All pairs \((X, Y) \in \mathcal{X} \times \mathcal{Y}\) are drawn i.i.d. from some unknown \(P_{\mathcal{X} \times \mathcal{Y}}\).

Definition
The expected loss or “risk” of a decision function \(f: \mathcal{X} \to \mathcal{A}\) is

\[
R(f) = \mathbb{E}\ell(f(X), Y),
\]

where the expectation taken is over \((X, Y) \sim P_{\mathcal{X} \times \mathcal{Y}}\).

Definition
A Bayes decision function \(f^*: \mathcal{X} \to \mathcal{A}\) is a function that achieves the minimal risk (called the Bayes risk) among all possible functions:

\[
R(f^*) = \inf_f R(f).
\]
The Empirical Risk Functional

Can we estimate $R(f)$ without knowing $P_{X \times Y}$?

Assume we have sample data

Let $D_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ be drawn i.i.d. from $P_{X \times Y}$.

- The empirical risk of $f : X \rightarrow A$ with respect to D_n is

 $$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).$$

- A function \hat{f} is an empirical risk minimizer if

 $$\hat{R}_n(\hat{f}) = \inf_{f} \hat{R}_n(f),$$

 where the minimum is taken over all functions.
Statistical Learning Theory Overview

Empirical Risk Minimization

\[P_X = \text{Uniform}[0, 1], \ Y \equiv 1 \ (\text{i.e. } Y \text{ is always 1}). \]

Under square loss or 0/1 loss: Empirical Risk = 0. Risk = 1.
So unconstrained ERM doesn’t work here.
Constrained Empirical Risk Minimization

- Hypothesis space \(\mathcal{F} \) is a set of functions mapping \(X \rightarrow A \)

- **Empirical risk minimizer (ERM)** in \(\mathcal{F} \) is \(\hat{f} \in \mathcal{F} \), where

 \[
 \hat{R}(\hat{f}) = \inf_{f \in \mathcal{F}} \hat{R}(f) = \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).
 \]

- **Risk minimizer** in \(\mathcal{F} \) is \(f^*_f \in \mathcal{F} \), where

 \[
 R(f^*_f) = \inf_{f \in \mathcal{F}} R(f) = \inf_{f \in \mathcal{F}} \mathbb{E} \ell(f(X), Y).
 \]
Error Decomposition

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) - R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) - R(f_{\mathcal{F}})$

\[
\begin{align*}
 f^* &= \arg \min_{f} \mathbb{E} \ell(f(X), Y) \\
 f_{\mathcal{F}} &= \arg \min_{f \in \mathcal{F}} \mathbb{E} \ell(f(X), Y) \\
 \hat{f}_n &= \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)
\end{align*}
\]
Approximation Error

- Approximation error is a property of the class \mathcal{F}
- It’s our penalty for restricting to \mathcal{F} rather than considering all measurable functions
 - Approximation error is the minimum risk possible with \mathcal{F} (even with infinite training data)
- \mathcal{F} bigger means smaller approximation error.
Estimation Error

- **Estimation error**: The performance hit for choosing f using finite training data
 - Equivalently: It’s the hit for not knowing the true risk, but only the empirical risk.
- Smaller \mathcal{F} means smaller estimation error.
- Under typical conditions: “With infinite training data, estimation error goes to zero.”
 - Infinite training data solves the *statistical* problem, which is not knowing the true risk.
Optimization Error

- Does unlimited data solve our problems?
- There’s still the *algorithmic* problem of finding $\hat{f}_n \in \mathcal{F}$.
- For nice choices of loss functions and classes \mathcal{F}, the algorithmic problem can be solved (to any desired accuracy).
 - Takes time! Is it worth it?

- For trees, can’t optimize exactly.

Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then the optimization error is $R(\tilde{f}_n) - R(\hat{f}_n)$

- NOTE: May have $R(\tilde{f}_n) < R(\hat{f}_n)$, since \hat{f}_n may overfit more than \tilde{f}_n!
Error Decomposition

Definition

The excess risk of f is the amount by which the risk of f exceeds the Bayes risk.

$$\text{Excess Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= R(\tilde{f}_n) - R(\hat{f}_n) + R(\hat{f}_n) - R(f^*_\mathcal{F}) + R(f^*_\mathcal{F}) - R(f^*)$$

- optimization error
- estimation error
- approximation error
Complexity Measures for Decision Functions

- Depth of a decision tree
- Degree of a polynomial
- How about for \textit{linear} models?
 - \(\ell_0 \) complexity: number of non-zero coefficients
 - \(\ell_1 \) “lasso” complexity: \(\sum_{i=1}^{d} |w_i| \), for coefficients \(w_1, \ldots, w_d \)
 - \(\ell_2 \) “ridge” complexity: \(\sum_{i=1}^{d} w_i^2 \) for coefficients \(w_1, \ldots, w_d \)
Nested Hypothesis Spaces from Complexity Measure

- Hypothesis space: \mathcal{F}
- Complexity measure $\Omega : \mathcal{F} \to \mathbb{R}^{\geq 0}$
- Consider all functions in \mathcal{F} with complexity at most r:

$$\mathcal{F}_r = \{ f \in \mathcal{F} | \Omega(f) \leq r \}$$

- If Ω is a norm on \mathcal{F}, this is a **ball of radius** r in \mathcal{F}.
- Increasing complexities: $r = 0, 1.2, 2.6, 5.4, \ldots$ gives nested spaces:

$$\mathcal{F}_0 \subset \mathcal{F}_{1.2} \subset \mathcal{F}_{2.6} \subset \mathcal{F}_{5.4} \subset \ldots \subset \mathcal{F}$$
Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega : \mathcal{F} \to \mathbb{R}_{\geq 0}$ and fixed $r \geq 0$,

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

s.t. $\Omega(f) \leq r$

- Choose r using validation data or cross-validation.
- Each r corresponds to a different hypothesis spaces. Could also write:

$$\min_{f \in \mathcal{F}_r} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega : \mathcal{F} \to \mathbb{R}^\geq 0$ and fixed $\lambda \geq 0$,

$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

- Choose λ using validation data or cross-validation.
Ridge and Lasso Regression

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter $\lambda \geq 0$ is

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2,$$

where $\|w\|_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter $r \geq 0$ is

$$\hat{w} = \arg\min_{\|w\|_2 \leq r} \sum_{i=1}^{n} \left\{ w^T x_i - y_i \right\}^2.$$
Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter \(\lambda \geq 0 \) is

\[
\hat{w} = \arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} \left\{ w^T x_i - y_i \right\}^2 + \lambda \| w \|_1,
\]

where \(\| w \|_1 = |w_1| + \cdots + |w_d| \) is the \(\ell_1 \)-norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter \(r \geq 0 \) is

\[
\hat{w} = \arg\min_{\| w \|_1 \leq r} \sum_{i=1}^{n} \left\{ w^T x_i - y_i \right\}^2.
\]
Lasso Gives Feature Sparsity: So What?

- Time/expense to compute/buy features
- Memory to store features (e.g. real-time deployment)
- Identifies the important features
- Better prediction? sometimes
- As a feature-selection step for training a slower non-linear model
Regression losses usually only depend on the residual:

\[r = y - \hat{y} \]

\[(\hat{y}, y) \mapsto \ell(r) = \ell(y - \hat{y})\]
Some Losses for Regression

- **Square** or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- **Absolute** or **Laplace** or ℓ_1 Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- **Huber** Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (robust and differentiable)

KPM Figure 7.6

David Rosenberg (New York University)
The Classification Problem: Real-Valued Predictions

- Action space $\mathcal{A} = \mathbb{R}$
- Output space $\mathcal{Y} = \{-1, 1\}$
- Prediction function $f : \mathcal{X} \rightarrow \mathbb{R}$

Definition
The value $f(x)$ is called the **score** for the input x. Generally, the magnitude of the score represents the **confidence of our prediction**.

Definition
The **margin** on an example (x, y) is $yf(x)$. The margin is a measure of how **correct** we are.

- We want to **maximize the margin**.
- Most classification losses depend only on the margin.
Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$

Logistic loss is differentiable. Never enough margin for logistic loss. How many support vectors?
(Soft Margin) Linear Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x \mid w \in \mathbb{R}^d \}$.
- Loss $\ell(m) = (1 - m)_+$
- ℓ_2 regularization
 \[
 \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [w^T x_i + b])_+ .
 \]
- unconstrained optimization
- not differentiable
- Can we reformulate into a differentiable problem?
SVM as a Quadratic Program

- The SVM optimization problem is equivalent to

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2}||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \xi_i \\
\text{subject to} & \quad \xi_i \geq 0 \text{ for } i = 1, \ldots , n \\
& \quad \xi_i \geq (1 - y_i [w^T x_i + b]) \text{ for } i = 1, \ldots , n
\end{align*}
\]

- Differentiable objective function
- A quadratic program that can be solved by any off-the-shelf QP solver.
SVM Dual Problem

- Can eliminate the λ variables:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

s.t. $$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \quad i = 1, \ldots, n.$$

Constraints are **box constraints**. (Simpler than primal constraints.)

- If α^* is a solution to the dual problem, then

$$w^* = \sum_{i=1}^{n} \alpha_i^* y_i x_i.$$

- Since $\alpha_i \in \left[0, \frac{c}{n}\right]$, we see that c controls the amount of weight we can put on any single example.
The Margin

- For notational convenience, define $f^*(x) = x_i^T w^* + b^*$.
- Margin $yf^*(x)$

Incorrect classification: $yf^*(x) \leq 0$.
Margin error: $yf^*(x) < 1$.
"On the margin": $yf^*(x) = 1$.
"Good side of the margin": $yf^*(x) > 1$.
Complementary Slackness Results: Summary

\[\alpha^*_i = 0 \implies y_if^*(x_i) \geq 1 \]
\[\alpha^*_i \in \left(0, \frac{c}{n}\right) \implies y_if^*(x_i) = 1 \]
\[\alpha^*_i = \frac{c}{n} \implies y_if^*(x_i) \leq 1 \]
\[y_if^*(x_i) < 1 \implies \alpha^*_i = \frac{c}{n} \]
\[y_if^*(x_i) = 1 \implies \alpha^*_i \in \left[0, \frac{c}{n}\right] \]
\[y_if^*(x_i) > 1 \implies \alpha^*_i = 0 \]
The Input Space \mathcal{X}

- Our general learning theory setup: no assumptions about \mathcal{X}
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we’ve developed:
 - Ridge regression
 - Lasso regression
 - Linear SVM
Feature Extraction

Definition

Mapping an input from \mathcal{X} to a vector in \mathbb{R}^d is called feature extraction or featurization.

- **e.g. Quadratic feature map:** $\mathcal{X} = \mathbb{R}^d$

\[
\phi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots \sqrt{2}x_{d-1}x_d)^T.
\]
High-Dimensional Features Good but Expensive

- To get **expressive** hypothesis spaces using linear models,
 - need high-dimensional feature spaces
- But more costly in terms of computation and memory.
Some Methods Can Be “Kernelized”

Definition
A method is **kernelized** if inputs only appear inside inner products:
\[\langle \phi(x), \phi(y) \rangle \] for \(x, y \in X \).

- The function
 \[k(x, y) = \langle \phi(x), \phi(y) \rangle \]

is called the **kernel** function.
Kernel Evaluation Can Be Fast

Example

Quadratic feature map

\[\phi(x) = (x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_ix_j, \ldots \sqrt{2}x_{d-1}x_d)^T \]

has dimension \(O(d^2) \), but

\[k(w, x) = \langle \phi(w), \phi(x) \rangle = \langle w, x \rangle + \langle w, x \rangle^2 \]

- Naively explicit computation of \(k(w, x) \): \(O(d^2) \)
- Implicit computation of \(k(w, x) \): \(O(d) \)
Recap

1. Given a kernelized ML algorithm.
2. Can swap out the inner product for a new kernel function.
3. New kernel may correspond to a high dimensional feature space.
4. Computational cost is independent of feature dimension.
 However, now has a quadratic dependence on the size of the data set.
Ridge Regression

- Recall the ridge regression objective:

\[J(w) = \|Xw - y\|^2 + \lambda \|w\|^2. \]

- Differentiating and setting equal to zero, we get:

\[(X^T X + \lambda I) w = X^T y \]
So we have, for $\lambda > 0$:

\[
(X^T X + \lambda I)w = X^T y
\]

\[
w = \frac{1}{\lambda} X^T (y - Xw)
\]

\[
w = X^T \alpha
\]

for $\alpha = \lambda^{-1} (y - Xw) \in \mathbb{R}^n$.

So w is “in the span of the data”:

\[
w = \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}
\]

\[
= \alpha_1 x_1 + \cdots + \alpha_n x_n
\]
Kernelizing Ridge Regression

- So plugging in $w = X^T \alpha$ to

 $$
 \alpha = \lambda^{-1}(y - Xw) \\
 \lambda \alpha = y - XX^T \alpha \\
 XX^T \alpha + \lambda \alpha = y \\
 (XX^T + \lambda I) \alpha = y \\
 \alpha = (\lambda I + XX^T)^{-1}y
 $$

- When can we swap in a new kernel matrix for XX^T?
Mercer’s Theorem

Theorem

A symmetric function $k(w, x)$ can be expressed as an inner product

$$k(w, x) = \langle \phi(w), \phi(x) \rangle$$

for some ϕ if and only if $k(w, x)$ is positive semidefinite.

- If we start with a psd kernel, can we generate more?
The Kernel Matrix (or the Gram Matrix)

Definition

For a set of \(\{x_1, \ldots, x_n\} \) and an inner product \(\langle \cdot, \cdot \rangle \) on the set, the kernel matrix or the Gram matrix is defined as

\[
K = \left(\langle x_i, x_j \rangle \right)_{i,j} = \begin{pmatrix}
\langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\
\vdots & \ddots & \vdots \\
\langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle
\end{pmatrix}.
\]

Then for the standard Euclidean inner product \(\langle x_i, x_j \rangle = x_i^T x_j \), we have

\[
K = XX^T
\]
Trees vs Linear Models

- Trees have to work much harder to capture linear relations.

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Comments about Trees

- Trees make no use of **geometry**
 - No inner products or distances
 - called a “nonmetric” method
 - **Feature scale irrelevant**

- Predictions are not continuous
 - not so bad for classification
 - may not be desirable for regression
Ensemble Methods

Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models
- **Parallel ensembles**: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance
- **Sequential ensembles**:
 - Models are generated sequentially
 - Try to add new models that do well where previous models lack
Averaging Independent Prediction Functions

Let Z_1, \ldots, Z_n be independent r.v’s with mean μ and variance σ^2.

Average has the same expected value but smaller variance:

$$\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \mu \quad \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \frac{\sigma^2}{n}.$$

Prediction functions? Suppose we have B independent training sets.
Let $\hat{f}_1(x), \hat{f}_2(x), \ldots, \hat{f}_B(x)$ be the prediction models for each set.
Define the average prediction function as:

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).$$

Variance of average?
In practice we don’t have B independent training sets...
 Instead, we can use the bootstrap....
The Bootstrap Sample

Definition

A bootstrap sample from $\mathcal{D} = \{X_1, \ldots, X_n\}$ is a sample of size n drawn with replacement from \mathcal{D}.

- In a bootstrap sample, some elements of \mathcal{D}
 - will show up multiple times,
 - some won’t show up at all.
- So we expect $\sim 63.2\%$ of elements of \mathcal{D} will show up at least once.
Suppose we had \(B \) bootstrap samples from a training set.

Bagging estimator given as

\[
\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^*_b(x),
\]

where \(\hat{f}^*_b \) is trained on the \(b \)'th bootstrap sample.
Random Forest

Main idea of random forests

Use bagged decision trees, but modify the tree-growing procedure to reduce the correlation between trees.

- **Key step** in random forests:
 - When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size m.
 - Typically choose $m \approx \sqrt{p}$, where p is the number of features.
 - Can choose m using cross validation.
AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- Final prediction $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
- The α_m’s are nonnegative,
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted \mathcal{D} less well
Adaptive Basis Function Model

- Hypothesis space \mathcal{F}
 - Can be classifiers or regression functions
 - These would be the “weak classifiers” or “base classifiers”

- An adaptive basis function expansion over \mathcal{F} is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- Each $h_m \in \mathcal{F}$ is chosen in a learning process, and
- ν_m are expansion coefficients.

- For example, \mathcal{F} could be all decision trees of depth at most 4.
- We now discuss one approach to fitting such a model.
Forward Stagewise Additive Modeling

1. Initialize $f_0(x) = 0$.

2. For $m = 1$ to M:

 1. Compute:

 $$ (\nu_m, h_m) = \arg \min_{\nu \in \mathbb{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \ell \left\{ y_i, f_{m-1}(x_i) + \nu h(x_i) \right\}. $$

2. Set $f_m(x) = f_{m-1}(x) + \nu_m h(x)$.

3. Return: $f_M(x)$.

David Rosenberg (New York University)
Exponential Loss and AdaBoost

- Take loss function to be
 \[\ell(y, f(x)) = \exp(-yf(x)). \]
- Let \(\mathcal{F} = \{h(x): \mathcal{X} \rightarrow \{-1, 1\}\} \) be a hypothesis space of weak classifiers.
- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost.
 - (See HTF Section 10.4 for proof.)
Score is just

\[
\text{score} = w_1 h_1 + w_2 h_2 \\
= w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))
\]

This is the basic recipe.

- We can add more hidden nodes.
- We can add more hidden layers.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.
Can interpret h_1 and h_2 as nonlinear features learned from data.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
Neural Network: The Hypothesis Space

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer
 - Activation function (but so many to choose from)

- Example neural network hypothesis space:

 \[\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f \text{ is a NN with 2 hidden layers, 500 nodes in each} \} \]

- Functions in \(\mathcal{F} \) parameterized by the weights between nodes.
Neural networks give a **new hypothesis space**.

But we can use all the **same loss functions** we’ve used before.

Optimization method of choice: **stochastic gradient descent**.
Neural Network: Objective Function

In our simple network, the output score is given by

\[f(x) = w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x)) \]

Objective with square loss is then

\[J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2 \]

Note: \(J(w, v) \) is not convex.

- makes optimization much more difficult
- accounts for many of the “tricks of the trade”
Back-propagation is an algorithm for computing the SGD gradient. Mathematically, it’s not necessary. With lots of chain rule, you can work out the gradient by hand. Back-propagation is:
- a clean way to organize the computation of the gradient
- an efficient way to compute the gradient
Suppose we have
\[\mathcal{D} = \{y_1, \ldots, y_n\} \text{ sampled i.i.d. from } p(y). \]

Then the **likelihood** of \(\hat{p} \) for the data \(\mathcal{D} \) is defined to be
\[\hat{p}(\mathcal{D}) = \prod_{i=1}^{n} \hat{p}(y_i). \]

We’ll write this as
\[L_{\mathcal{D}}(\hat{p}) := \hat{p}(\mathcal{D}). \]

Special case: If \(\hat{p} \) is a probability mass function, then
- \(L_{\mathcal{D}}(\hat{p}) \) is the probability of \(\mathcal{D} \) under \(\hat{p} \).
Output space \mathcal{Y} (containing observations from distribution P)

Action space

$\mathcal{A} = \{ p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y} \}$.

How to encode our objective of “high likelihood” as a loss function?

Define loss function as the negative log-likelihood of y under $p(\cdot)$:

$$
\ell: \mathcal{A} \times \mathcal{Y} \to \mathbb{R}
$$

$$(p, y) \mapsto -\log p(y)$$
Input space \mathcal{X}

Output space \mathcal{Y}

All pairs (X, Y) are independent with distribution $P_{X \times Y}$.

Action space

$\mathcal{A} = \{ p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y} \}$.

Hypothesis spaces comprise decision functions $f : \mathcal{X} \rightarrow \mathcal{A}$.

- Given an $x \in \mathcal{X}$, predict a probability distribution $p(y)$ on \mathcal{Y}.

Loss function as before:

$$\ell : \mathcal{A} \times \mathcal{Y} \rightarrow \mathbb{R}$$

$$(p, y) \mapsto -\log p(y)$$

ERM gives MLE.
The risk of decision function $f : \mathcal{X} \to \mathcal{A}$

$$R(f) = -\mathbb{E}_{X,Y} \log [f(X)](Y),$$

where $f(X)$ is a PDF or PMF on \mathcal{Y}, and we’re evaluating it on Y.

The empirical risk of f for a sample $\mathcal{D} = \{y_1, \ldots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\sum_{i=1}^{n} \log [f(x_i)] (y_i).$$

This is called the negative conditional log-likelihood.
Linear Probabilistic Classifiers

- Setting: $X = \mathbb{R}^d$, $y = \{0, 1\}$
- For each $X = x$, $p(Y = 1 \mid x) = \theta$. (i.e. Y has a $\text{Bernoulli}(\theta)$ distribution)
- θ may vary with x.
- For each $x \in \mathbb{R}^d$, just want to predict $\theta \in [0, 1]$.
- Two steps:

$$
\begin{align*}
\begin{array}{c}
x \\
\in \mathbb{R}^D
\end{array} & \mapsto \\
\begin{array}{c}
w^T x \\
\in \mathbb{R}
\end{array} & \mapsto \\
\begin{array}{c}
f(w^T x) \\
\in [0, 1]
\end{array}
\end{align*}
$$

where $f : \mathbb{R} \to [0, 1]$ is called the transfer or inverse link function.
- Probability model is then

$$
p(Y = 1 \mid x) = f(w^T x)
$$
Inverse Link Functions

- Two commonly used "inverse link" functions to map from $w^T x$ to θ:

- Logistic function \Rightarrow Logistic Regression
- Normal CDF \Rightarrow Probit Regression
The family is a **natural exponential family** with parameter θ if

$$p_\theta(y) = \frac{1}{Z(\theta)} h(y) \exp[\theta^Ty].$$

To specify a natural exponential family, we need to choose $h(y)$.

- Everything else is determined.
- Implicit in choosing $h(y)$ is the choice of the support of the distribution.
The following are univariate natural exponential families:

1. Normal distribution with known variance.
2. Poisson distribution
3. Gamma distribution (with known k parameter)
4. Bernoulli distribution (and Binomial with known number of trials)
In GLMs, we first choose a natural exponential family.

- (This amounts to choosing $h(y)$.)

The idea is to plug in $w^T x$ for the natural parameter.

This gives models of the following form:

$$p_\theta(y \mid x) = \frac{1}{Z(w^T x)} h(y) \exp [(w^T x) y].$$

This is the form we had for Poisson regression.
More generally, choose a function ψ so that

$$x \mapsto w^T x \mapsto \psi (w^T x),$$

where $\theta = \psi (w^T x)$ is the natural parameter for the family.

So our final prediction (for one-parameter families) is:

$$p_\theta (y \mid x) = \frac{1}{Z (\psi (w^T x))} h(y) \exp \left[\psi (w^T x) y \right].$$
Gradient Descent

- Initialize $x = 0$
- repeat
 - $x \leftarrow x - \eta \nabla f(x)$
 - step size
- until stopping criterion satisfied
Gradient Descent: Does it scale?

- At every iteration, we compute the gradient at current w:

\[
\nabla_w \hat{R}_n(w) = \frac{2}{n} \sum_{i=1}^{n} (w^T x_i - y_i) x_i
\]

- We have to touch all n training points to take a single step. $[O(n)]$
 - Called a **batch optimization** method

- Can we make progress without looking at all the data?
Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize $w = 0$
- repeat
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$
 - $w \leftarrow w - \eta \nabla_w \ell(f_w(x_i), y_i)$
 - Grad(Loss on i'th example)
- until stopping criteria met
How to find the Lasso solution?

- How to solve the Lasso?

\[
\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda |w|_1
\]

- $|w|_1$ is not differentiable!
Substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$, Lasso problem is:

$$
\min_{w^+, w^- \in \mathbb{R}^d} \sum_{i=1}^n \left((w^+ - w^-)^T x_i - y_i \right)^2 + \lambda (w^+ + w^-)
$$

subject to $w_i^+ \geq 0$ for all i

$w_i^- \geq 0$ for all i

Objective is differentiable (in fact, convex and quadratic)

2d variables vs d variables

2d constraints vs no constraints

A “quadratic program”: a convex quadratic objective with linear constraints.

Could plug this into a generic QP solver.
Projected SGD

\[
\begin{align*}
\min_{w^+, w^- \in \mathbb{R}^d} & \sum_{i=1}^{n} \left((w^+ - w^-)^T x_i - y_i \right)^2 + \lambda (w^+ + w^-) \\
\text{subject to} & \quad w_i^+ \geq 0 \text{ for all } i \\
 & \quad w_i^- \geq 0 \text{ for all } i
\end{align*}
\]

- **Solution:**
 - Take a stochastic gradient step
 - "Project" \(w^+ \) and \(w^- \) into the constraint set
 - In other words, any component of \(w^+ \) or \(w^- \) is negative, make it 0.
 - **Note:** Sparsity pattern may change frequently as we iterate
Coordinate Descent Method

Goal: Minimize \(L(w) = L(w_1, \ldots, w_d) \) over \(w = (w_1, \ldots, w_d) \in \mathbb{R}^d \).

- Initialize \(w^{(0)} = 0 \)
- while not converged:
 - Choose a coordinate \(j \in \{1, \ldots, d\} \)
 - \(w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \ldots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \ldots, w_d^{(t)}) \)
 - \(w^{(t+1)} \leftarrow w^{(t)} \)
 - \(w_j^{(t+1)} \leftarrow w_j^{\text{new}} \)
 - \(t \leftarrow t + 1 \)

- For when it’s easier to minimize w.r.t. one coordinate at a time
- Random coordinate choice \(\Rightarrow \) **stochastic coordinate descent**
- Cyclic coordinate choice \(\Rightarrow \) **cyclic coordinate descent**
Why mention coordinate descent for Lasso?

In Lasso, the coordinate minimization has a **closed form solution**!
The Lagrangian

Recall the general optimization problem:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p,
\end{align*}
\]

Definition

The \textbf{Lagrangian} for the general optimization problem is

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x),
\]

- \(\lambda_i\)'s and \(\nu\)'s are called \textbf{Lagrange multipliers}
- \(\lambda\) and \(\nu\) also called the \textbf{dual variables}.
The Primal and the Dual

• Original optimization problem in **primal form:**

\[p^* = \inf_x \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) \]

• The **Lagrangian dual problem:**

\[d^* = \sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu) \]

• We showed **weak duality:** \(p^* \geq d^* \) for any optimization problem
Convex and Concave Functions

Definition
A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is **convex** if $\text{dom } f$ is a convex set and if for all $x, y \in \text{dom } f$, and $0 \leq \theta \leq 1$, we have

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$
Convex Optimization Problem: Standard Form

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad a_i^T x = b_i, \quad i = 1, \ldots, p
\end{align*}
\]

where \(f_0, \ldots, f_m \) are convex functions.

Note: Equality constraints are now linear. Why? [otherwise feasible set won’t be convex]
Slater’s Constraint Qualifications for Strong Duality

- Sufficient conditions for strong duality in a **convex** problem.
- Roughly: the problem must be **strictly** feasible.
- The domain \(\mathcal{D} \subset \mathbb{R}^n \) of an optimization problem is the set on which all the functions are defined.
 - i.e. \(f_0, f_1, \ldots, f_m \) are all defined.
 - the domain \(\mathcal{D} \) is NOT the feasible set.
- Qualifications when problem domain \(\mathcal{D} \subset \mathbb{R}^n \) is an open set:
 - \(\exists x \) such that \(Ax = b \) and \(f_i(x) < 0 \) for \(i = 1, \ldots, m \)
 - For any affine inequality constraints, \(f_i(x) \leq 0 \) is sufficient
Complementary Slackness

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have **strong duality**, we get an interesting relationship between
 - the optimal Lagrange multiplier \(\lambda_i \) and
 - the \(i \)th constraint at the optimum: \(f_i(x^*) \)
- Relationship is called “**complementary slackness**”:
 \[
 \lambda_i^* f_i(x^*) = 0
 \]
- Lagrange multiplier is zero unless the constraint is active at the optimum.