
COMMON PROBABILITY DISTRIBUTIONS

SHANSHAN DING

We start with discrete distributions.

1 Binomial. The binomial distribution Binom(n, p) is the distribution on the num-
ber of successes in n independent and identically distributed Bernoulli trials, where the
probability of success in each trial is p. The Bernoulli distribution is the special case
when n = 1. For a random variable X ∼ Binom(n, p), the probability mass function has
support1 {0, 1, . . . , n} and is given by

(1) P(X = k) =

(
n

k

)
pk(1− p)n−k.

The term pk(1 − p)n−k is the probability that, given a partition of n trials into groups
A and B of k and n − k trials respectively, all trials in A are successes and all trials in
B are failures, and the binomial coefficient

(
n
k

)
= n!/k!(n − k)! is the number of such

partitions.
Recall that

(2) E
(∑

Xi

)
=
∑

E(Xi)

for arbitrary random variables, and that

(3) Var
(∑

Xi

)
=
∑

Var(Xi)

for independent random variables. Since the mean of X ∼ Binom(1, p) is by definition
p, the mean of X ∼ Binom(n, p) is np. The variance of X ∼ Binom(1, p) is easily seen
to be p(1− p), and thus the variance of X ∼ Binom(n, p) is np(1− p).

2 Multinomial. The multinomial distribution generalizes the binomial distribution.
Here each trial has r possible outcomes with probabilities p1, . . . , pr respectively. The
pmf of the multinomial distribution is

(4) P(X1 = k1, . . . , Xr = kr) =
n!

k1! · · · kr!
pk11 · · · pkrr ,

where the ki’s are non-negative and sum to n. Like with the binomial distribution,
E(Xi) = npi and Var(Xi) = npi(1 − pi). Additionally, Cov(Xi, Xj) = −npipj, the proof
of which we leave as a simple exercise.

The n = 1 case of the multinomial distribution is called the categorical distribution.

1The support of a function is the set on which the function is not zero-valued.
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3 Poisson. The author’s personal favorite, the Poisson distribution is the distribution
on the number of times an event occurs during a fixed length of time or space, where

(1) The numbers of events occurring during two disjoint intervals are independent.
(2) The probability of an event occurring during a small interval is proportional to

the length of the interval. More formally, the probability of an occurrence in
[t, t+ h) is ch+ o(h).2

(3) There are no simultaneous events. More formally, the probability of multiple
events in [t, t+ h) is o(h).

For X ∼ P(λ), where λ is the average number of events, the pmf of X is given by

(5) P(X = k) =
λke−λ

k!
.

Straightforward but tedious computations show that Var(X) = E(X) = λ. Moreover,
using characteristic functions, one can show that the sum of two Poissons is again Poisson,
namely that if X1 ∼ P(λ1) and X2 ∼ P(λ2), then X1 +X2 ∼ P(λ1 + λ2).

That mean is equal to variance is an important property of the Poisson. The author
has worked on problems where a family of distributions was identified as Poisson by
observing this property. Also, homoscedasticity, where a vector of random variables has
the same variance, should not be assumed for Poissons for this reason.

Due to criterion 3 above, the Poisson distribution is sometimes known as the “law of
small numbers”. In particular, we can divide an interval into n subintervals small enough
that there are no multiple events in the same subinterval and think of each subinterval
as a Bernoulli trial with probability of success λ/n. This leads to the following:

Theorem (Poisson limit). For fixed λ, limn→∞ Binom(n, λ/n)→ P(λ).

Proof. Write

(6)
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!

n!

(n− k)!nk

(
1− λ

n

)n(
1− λ

n

)−k
,

and observe that

(7)
n!

(n− k)!nk
=
n(n− 1) · · · (n− k + 1)

nk
→ 1,

(8)

(
1− λ

n

)n
→ e−λ, and

(9)

(
1− λ

n

)−k
→ 1.

Hence

(10) lim
n→∞

n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λke−λ

k!
,

as was to be shown. �

2Here we say that f(x) is o(g(x)) if limx→0 f(x)/g(x) = 0, i.e. f(x) goes to zero faster than g(x) does.
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Remark. In fact, we can relax the assumption of fixed λ: if n→∞ and p→ 0 such that
np → λ, Binom(n, p) → P(λ). The corresponding proof, however, is considerably more
difficult.

Remark. Compare this to the normal approximation of the binomial, where p remains
constant as n → ∞. In practice, Poisson is used instead of the normal to approximate
limit of the binomial when p is small (e.g. ≤ 0.05) and np is bounded (e.g. ≤ 10).

In the late 19th century the Polish-Russian scholar (proto-data scientist?) Ladislaus
Bortkiewicz used the Poisson distribution to model the number of soldiers killed by horse
kicks in the Prussian army. The term “law of small numbers” is attributed to him.

Next we look at a couple of continuous distributions, skipping the familiar uniform
and normal distributions.

4 Exponential. The exponential distribution describes time elapsed between Poisson
events, which is sometimes easier to record than the number of events itself. It is the
continuous analogue of the geometric distribution (the distribution on the number of
Bernoulli trials needed to get one success). For a random variable X with exponential
distribution, the pdf can be derived as follows: let c be the rate parameter, namely the
expected number of events during a unit of time, and let Y ∼ Poi(ct). Then

(11) P(X > t) = P(Y = 0) = e−ct,

thus the cdf of X is 1− e−ct, and the pdf is its derivative,

(12) f(t;α) = ce−ct t ≥ 0.

Furthermore, integration by parts gives that E(X) = 1/c and Var(X) = 1/c2.
Note that by Bayes’ rule,

(13)

P(X > s+ t|X > s) =
P(X > s|X > s+ t)P(X > s+ t)

P(X > s)

=
e−c(s+t)

e−cs
= e−ct = P(X > t).

In words, at the present moment, the amount of time until the next event is independent
of how much time has already passed since the last event. This is called the memoryless
property of the exponential.

Terminology disclaimer: A family of exponential distributions is not the same thing as
the class of exponential families of distributions, a class of distributions with convenient
statistical properties that include the exponential distributions but also many other types
of distributions.

5 Beta. The beta distribution is a family of two-parameter distributions defined by
the pdf

(14) f(x;α, β) = Cxα−1(1− x)β−1 0 ≤ x ≤ 1,

where, since the pdf must integrate to 1,

(15) C =
1∫ 1

0
xα−1(1− x)β−1dx

.
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The beta distribution derives its name from the integral B(α, β) =
∫ 1

0
xα−1(1−x)β−1dx,

known as the beta function. Using integration by parts, one can show that

(16) B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

where Γ is the gamma function

(17) Γ(t) =

∫ ∞
0

xt−1e−xdx, with Γ(t)|Z+ = (t− 1)!.

It is easy to compute all moments of X ∼ Beta(α, β):

(18) E(Xn) =

∫ 1

0

xnxα−1(1− x)β−1

B(α, β)
dx =

B(α + n, β)

B(α, β)
=

Γ(α + n)Γ(α + β)

Γ(α)Γ(α + β + n)
,

and in particular, the identity Γ(t+ 1) = tΓ(t) gives us that

(19) E(X) =
α

α + β
and Var(X) =

αβ

(α + β)2(α + β + 1)2
.

Setting α = β = 1 yields the uniform distribution on [0, 1]. Setting α = β = 1/2 yields
the arcsine distribution on [0, 1], so-named because its cdf is

(20) F (x) =
2

π
arcsin(

√
x).

The arcsine distribution is beyond the scope of these notes, but it is a fascinating topic
with applications in finance, sports, and number theory.

The beta distribution features prominently in Bayesian statistics as the conjugate prior
for the binomial distribution. Let

(21) p(θ) = Beta(α, β) =
θα−1(1− θ)β−1

B(α, β)

be the prior on the Bernoulli parameter. After observing k successes in n trials, we
update our belief on θ:

(22)

p(θ|data) ∝ p(data|θ)p(θ)
∝ θk(1− θ)n−kθα−1(1− θ)β−1

= Cθα+k−1(1− θ)β+n−k−1.
Since this integrates to 1, we see that C = 1/B(α + k, β + n− k), and thus

(23) p(θ|data) = Beta(α + k, β + n− k).

That the prior and the posterior belong to the same family of distributions is highly
desirable, for otherwise the posterior may not have a closed-form expression and Bayesian
updating would require difficult numerical integrations.


