
Syllabus for Machine Learning and Computational Statistics 
Course name: Machine Learning and Computational Statistics 
Course number: DS-GA 1003 
Course credits: 3 
Year of the Curriculum: one 
 
Course Description: The course covers a wide variety of topics in machine learning and 
statistical modeling. While mathematical methods and theoretical aspects will be covered, 
the primary goal is to provide students with the tools and principles needed to solve both the 
traditional and the novel data science problems found in practice.  This course will serve as 
a foundation of knowledge on which more advanced courses and further independent study 
can build.   
 
Course Instructor: David Rosenberg, dr129@nyu.edu 
 
Academic Term in which course is given: Spring 
 
Contact Hours: 14-week semester. Each week comprises 100 minutes of lectures and 50 
minutes of lab session (in a classroom format) or supervised research activities. Course 
staff will be available for office hours for at least 3 hours per week.  Course staff will also be 
available online through our Piazza page 
(https://piazza.com/nyu/spring2015/dsga1003/home). 
 
Course aims and objectives: 

• Teach intermediate topics in machine learning 
• Provide hands-on experience in designing and programming data science algorithms 
• Provide a basis for advanced study of machine learning and statistical modeling 

 
Prerequisites 

• Introduction to Data Science (DS-GA 1001), or its equivalent 
• Solid mathematical background, equivalent to a 1-semester undergraduate course 

in each of the following: linear algebra, multivariate calculus, probability theory, and 
statistics 

• Python programming required for all homework assignments (not necessary for 
auditors as it will only be lightly mentioned in lectures) 

• Recommended: Computer science background up to a course in data structures and 
algorithms 

• Recommended: At least one advanced, proof-based mathematics course 
• Some prerequisites may be waived with permission of the instructor 

 
Tentative List of Topics By Week: 

• Week 1: statistical learning theory framework, stochastic gradient descent, 
matrix/vector differentiation 

• Week 2: excess risk decomposition, L1/L2 regularization, Lasso algorithms, 
subgradient descent  

• Week 3: loss functions, convex optimization, SVM 



• Week 4: kernels, kernel ridge regression, kernelized SVM 
• Week 5: trees, bias and variance decomposition 
• Week 6: ensemble methods: bootstrap, bagging, random forest, AdaBoost 
• Week 7: gradient boosting, neural networks 
Spring Break 
• Week 8: natural exponential families and generalized linear models  
• Week 9: midterm review  
• Week 10: midterm exam  
• Week 11: Bayesian networks, class-conditional models, naïve Bayes 
• Week 12: clustering, Gaussian mixture models, EM algorithm 
• Week 13: Bayesian methods, hierarchical models, Gibbs sampling, SVD, PCA, 

Linear Discriminant Analysis 
• Week 14: catch up, other topics  
• Week 15: project poster session 

 

Time permitting, we may be able to cover some of the following additional topics: Gaussian 
processes, ranking problems, collaborative filtering, sparse Bayesian models (RVM), 
Bayesian model selection, bandit problems (Thompson sampling and UCB methods), 
generalization bounds. All of these are accessible topics for a class at this level.  In any 
case, ambitious students are encouraged to seek my guidance in pursuing these topics on 
their own. 

 
Method of assessment: 

• There will be roughly 8 to 10 homework assignments with both written and 
programming parts.  Some assignments may have extra credit opportunities in the 
form of optional questions. Homeworks are due at 4pm on the date specified. 
Homeworks will still be accepted for 48 hours after this time but will have a 20% 
penalty. 

• Midterm Exam: The exam will cover material from lectures, lab sessions, homework, 
and assigned readings up to the week before the exam. 

• Final Project: Final projects will be done in groups of two students.  Each group will 
be assigned to a senior data scientist from industry who will serve as an adviser.  
The project will typically involve either a new data source, or doing something new 
with a well-known data source.  More methodological or theoretical projects are also 
possible. In any case, the project must have some degree of “figuring out the 
approach”, rather than just implementing or comparing known methods.  

 
Grading: The final numerical score will be the weighted average of assignment score (60%), 
the midterm exam (20%), and the final project (20%).   
 
Bibliography and other resources: 

• (Required) Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT 
Press, 2012. 

• Boyd and Vandenberghe, Convex Optimization, Cambridge University Press, 2009. 
• Hastie, Tibshirani, Friedman, Elements of Statistical Learning, Second Edition, 

Springer-Verlag, 2009. 



 
Instructor/course evaluation: Students will complete an anonymous survey electronically at 
the end of the term. The tabulated results will be reviewed by the instructor, the director of 
the program, and the chair of the home department of the instructor. Issues will be identified 
and managed to successful remediation. 
 
Academic Integrity Policy: The course conforms to NYU’s policy on academic integrity for 
students: (http://www.nyu.edu/about/policies-guidelines-compliance/policies-and-
guidelines/academic-integrity-for-students-at-nyu.html 
 
This policy prohibits plagiarism and cheating. 

• Plagiarism: presenting others' work without adequate acknowledgement of its 
source, as though it were one’s own.  Plagiarism is a form of fraud.  We all stand on 
the shoulders of others, and we must give credit to the creators of the works that we 
incorporate into products that we call our own.  Some examples of plagiarism: 

o a sequence of words incorporated without quotation marks 
o an unacknowledged passage paraphrased from another's work 
o the use of ideas, sound recordings, computer data or images created by 

others as  though it were one’s own 
• Cheating: deceiving a faculty member or other individual who assess student 

performance into believing that one’s mastery of a subject or discipline is greater 
than it is by a range of dishonest methods, including but not limited to: 

o bringing or accessing unauthorized materials during an examination (e.g., 
notes, books, or other information accessed via cell phones, computers, other 
technology or any other means) 

o providing assistance to acts of academic misconduct/dishonesty (e.g., 
sharing copies of exams via cell phones, computers, other technology or any 
other means, allowing others to copy answers on an exam) 

o submitting the same or substantially similar work in multiple courses, either in 
the same semester or in a different semester, without the express approval of 
all  instructors 

o submitting work (papers, homework assignments, computer programs, 
experimental results, artwork, etc.) that was created by another, substantially 
or in whole, as one's own 

o submitting answers on an exam that were obtained from the work of another 
person or providing answers or assistance to others during an exam when not 
explicitly permitted by the instructor 

o submitting evaluations of group members’ work for an assigned group project 
which misrepresent the work that was performed by another group member 

o altering or forging academic documents, including but not limited to 
admissions materials, academic records, grade reports, add/drop forms, 
course registration forms, etc. 
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