
Machine Learning and Computational Statistics, Spring 2015

Homework 3: SVM and Sentiment Analysis

Due: Monday, February 23, 2015, at 4pm (Submit via NYU Classes)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single PDF file. You may include your code inline or submit it as a
separate file. You may either scan hand-written work or, preferably, write your answers using
software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython).

1 Introduction

In this assignment, we’ll be working with natural language data. In particular, we’ll be doing
sentiment analysis on movie reviews. This problem will give you the opportunity to try your hand
at feature engineering, which is one of the most important parts of many data science problems.
From a technical standpoint, this homework has two new pieces. First, you’ll be implementing
Pegasos. Pegasos is essentially SGD for the SVM, and it even comes with a schedule for the step-
size, so nothing to tweak there. Second, because in natural langauge domains we typically have
huge feature spaces, we work with sparse representations of feature vectors, where only the non-zero
entries are explicitly recorded. This will require coding your gradient and SGD code using hash
tables (dictionaries in Python), rather than numpy arrays.

2 The Data

We will be using the “polarity dataset v2.0”, constructed by Pang and Lee (http://www.cs.
cornell.edu/People/pabo/movie%2Dreview%2Ddata/). It has the full text from 2000
movies reivews: 1000 reviews are classified as “positive” and 1000 as “negative.” Our goal is
to predict whether a review has positive or negative sentiment from the text of the review. Each
review is stored in a separate file: the positive reviews are in a folder called “pos”, and the negative
reviews are in “neg”. We have provided some code in load.py to assist with reading these files.
You can use the code, or write your own version. The code removes some special symbols from the
reviews. Later you can check if this helps or hurts your results.

1. Load all the data and randomly split it into 1500 training examples and 500 test examples.
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3 Sparse Representations

The most basic way to represent text documents for machine learning is with a “bag-of-words”
representation. Here every possible word is a feature, and the value of a word feature is the number
of times that word appears in the document. Of course, most words will not appear in any particular
document, and those counts will be zero. Rather than store a huge number of zeros, we use a
sparse representation, in which we only store the counts that are nonzero. The counts are stored
in a key/value store (such as a dictionary in Python). For example, “Harry Potter and Harry
Potter II” would be represented as the following Python dict: x={‘Harry’:2, ‘Potter’:2, ‘and’:1,
’II’:1}. We will be using linear classifiers of the form f(x) = wTx, and we can store the w vector in
a sparse format as well, such as w={‘minimal’:1.3,‘Harry’:-1.1,‘viable’:-4.2,‘and’:2.2,‘product’:9.1}.
The inner product between w and x would only involve the features that appear in both x and w,
since whatever doesn’t appear is assumed to be zero. For this example, the inner product would
be x[Harry] * w[Harry] + x[and] * w[and] = 2*(-1.1) + 1*(2.2). Although we hate to spoil the fun,
to help you along, we’ve included two functions for working with sparse vectors: 1) a dot product
between two vectors represented as dict’s and 2) a function that increments one sparse vector by a
scaled multiple of another vector, which is a very common operation. These functions are located
in util.py.

1. Write a function that converts an example (e.g. a list of words) into a sparse bag-of-words
representation. You may find Python’s Counter class to be useful here: https://docs.
python.org/2/library/collections.html. Note that a Counter is also a dict.

2. Write a version of generic gradient checker from Homework 1 that works with sparse
vectors represented as dict types. See Homework 1 solutions if you didn’t do that part. Since
we’ll be using it for stochastic methods, it should take a single (x, y) pair, rather than the
entire dataset. Be sure to use the dotProduct and increment primitives we provide, or make
your own.

4 Support Vector Machine via Pegasos

In this question you will build an SVM using the Pegasos algorithm. To align with the notation used
in the Pegasos paper1, we’re considering the following formulation of the SVM objective function:

min
w∈Rn

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yiwTxi
}
.

Note that, for simplicity, we are leaving off the unregularized bias term b, and the expression with
“max” is just another way to write

(
1− yiwTx

)
+

. Pegasos is stochastic subgradient descent using

a step size rule ηt = 1/ (λt). The pseudocode is given below:

1Shalev-Shwartz et al.’s “Pegasos: Primal Estiamted sub-GrAdient SOlver for SVM” http://ttic.uchicago.
edu/˜nati/Publications/PegasosMPB.pdf
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Input: λ > 0. Choose w1 = 0, t = 0
While epoch ≤ max epochs

For j = 1, . . . ,m (assumes data is randomly permuted)
t = t+ 1
ηt = 1/ (tλ);
If yjw

T
t xj < 1

wt+1 = (1− ηtλ)wt + ηtyjxj
Else
wt+1 = (1− ηtλ)wt

1. [Written] Compute a subgradient for the “stochastic” SVM objective, which assumes a single
training point. Show that if your step size rule is ηt = 1/ (λt), then the the corresponding
SGD update is the same as given in the pseudocode.

2. Implement the Pegasos algorithm to run on a sparse data representation. The output should
be a sparse weight vector w. [As should be your habit, please check your gradient using
generic gradient checker while you are in the testing phase. That will be our first
question if you ask for help debugging. Once you’re convinced it works, take it out so it
doesn’t slow down your code.]

3. Write a function that takes the sparse weight vector w and a collection of (x, y) pairs, and
returns the percent error when predicting y using sign(wTx) (that is, report the 0-1 loss).

4. Using the bag-of-words feature representation described above, search for the regularization
parameter that gives the minimal percent error on your test set. A good search strategy is to
start with a set of lambdas spanning a broad range of orders of magnitude. Then, continue to
zoom in until you’re convinced that additional search will not significantly improve your test
performance. Once you have a sense of the general range of regularization parameters that
give good results, you do not have to search over orders of magnitude every time you change
something (such as adding new feature).

5. Recall that the “score” is the value of the prediction f(x) = wTx. We like to think that the
magnitude of the score represents the confidence of the prediction. This is something we can
directly verify or refute. Break the predictions into groups based on the score (you can play
with the size of the groups to get a result you think is informative). For each group, examine
the percentage error. You can make a table or graph. Summarize the results. Is there a
correlation between higher magnitude scores and accuracy?

5 Error Analysis

The natural language processing domain is particularly nice in that one can often interpret why a
model has performed well or poorly on a specific example, and sometimes it is not very difficult to
come up with ideas for new features that might help fix a problem. The first step in this process is
to look closely at the errors that our model makes.

1. Choose some examples that the model got wrong. List the features that contributed most
heavily to the descision (e.g. rank them by |wixi|), along with xi, wi, xwi. Do you understand
why the model was incorrect? Can you think of a new feature that might be able to fix the
issue? Include a short analysis for at least 3 incorrect examples.
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6 Features

For a problem like this, the features you use are far more important than the learning model you
choose. Whenever you enter a new problem domain, one of your first orders of business is to beg,
borrow, or steal the best features you can find. This means looking at any relevant published work
and seeing what they’ve used. Maybe it means asking a colleague what features they use. But even-
tually you’ll need to engineer new features that help in your particular situation. To get ideas for this
dataset, you might check the discussion board on this Kaggle competition, which is using a very simi-
lar dataset https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews. There
are also a very large number of academic research papers on sentiment analysis that you can look
at for ideas.

1. Based on your error analysis, or on some idea you have, find a new feature (or group of features)
that improve your test performance. Describe the features and what kind of improvement
they give. At this point, it’s important to consider the standard errors (

√
p(1− p)/n) on your

performance estimates, to know whether the improvement is statistically significant.

2. [Optional] Try to get the best performance possible by generating lots of new features, chang-
ing the pre-processing, or any other method you want, so long as you are using the same
core SVM model. Describe what you tried, and how much improvement each thing brought
to the model. To get you thinking on features, here are some basic ideas of varying quality:
1) how many words are in the review? 2) How many “negative” words are there? (You’d
have to construct or find a list of negative words.) 3) Word n-gram features: Instead of
single-word features, you can make every pair of consecutive words a feature. 4) Character
n-gram features: Ignore word boundaries and make every sequence of n characters into a
feature (this will be a lot). 5) Adding an extra feature whenever a word is preceded by “not”.
For example “not amazing” becomes its own feature. 6) Do we really need to eliminate those
funny characters in the data loading phase? Might there be useful signal there? 7) Use tf-idf
instead of raw word counts. The tf-idf is calculated as

tfidf(fi) =
FFi

log(DFi)
(1)

where FFi is the feature frequency of feature fi and DFi is the number of document containing
fi. In this way we increase the weight of rare words. Sometimes this scheme helps, sometimes
it makes things worse. You could try using both! [Extra credit points will be awarded in
proportion to how much improvement you achieve.]

7 Feedback (not graded)

1. Approximately how long did it take to complete this assignment?

2. Did you find the Python programming challenging (in particular, converting your code to use
sparse representations)?

3. Any other feedback?
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