
Machine Learning and Computational Statistics, Spring 2015

Homework 5: Trees and Ensemble Methods

Due: Wednesday, March 25, 2015, at 4pm (Submit via NYU Classes)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single PDF file. You may include your code inline or submit it as a
separate file. You may either scan hand-written work or, preferably, write your answers using
software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython).

1 Introduction

In this problem set, you will work with decision trees and ensemble methods. You will be using the
decision tree implementation from sklearn, and implementing AdaBoost from scratch. You’ll
also work on some simple theoretical problems that highlight interesting properties of decision trees
and ensemble methods.

2 Dataset description

You will be working with a simple two-feature binary dataset, known as the Banana dataset1, which
can be visualized as follows:

1http://mldata.org/repository/data/viewslug/banana-ida/
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(Source: http://adessowiki.fee.unicamp.br/adesso/wiki/courseIA368Q1S2012/
eri_test_2/view/)

The data consists of 5,300 instances, which have been split into 3,500 training points and
1,800 test points for this assignment. The csv files are included in the data directory. Each
row corresponds to a data point - the first entry of the row gives the class label, and the next two
entries give the values of the attributes.

3 Decision Trees

3.1 Building Trees by Hand2

In this problem we’re going to be build a a small decision tree by hand for predicting whether or
not a mushroom is poisonous. The training dataset is given below:

Poisonous Size Spots Color
N 5 N White
N 2 Y White
N 2 N Brown
N 3 Y Brown
N 4 N White
N 1 N Brown
Y 5 Y White
Y 4 Y Brown
Y 4 Y Brown
Y 1 Y White
Y 1 Y Brown

We’re going to build a binary classification tree using the Gini index as the node impurity
measure. The feature “Size” should be treated as numeric (i.e. we should find real-valued split
points). For a given split, let R1 and R2 be the sets of data indices in each of the two regions of the
split. Let p̂1 be the proportion of poisonous mushrooms in R1, and let p̂2 be the proportion in R2.
Let N1 and N2 be the total number of training points in R1 and R2, respectively. Then the Gini
index for the first region is Q1 = 2p̂1(1 − p̂1) and Q2 = 2p̂2(1 − p̂2) for the second region. When
choosing our splitting variable and split point, we’re looking to minimize the weighted impurity
measure:

N1Q1 +N2Q2.

1. What is the first split for a binary classification tree on this data, using the Gini index? Work
this out “by hand”, and show your calculations. [Hint: This should only require calculating
6 weighted impurity measures.]

2. Compute the full decision tree by hand, building until all terminal nodes are either completely
pure, or we cannot split any further.

2Based on Homework #4 from David Sontag’s DS-GA 1003, Spring 2014.
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3. Suppose we built the same type of tree described above (binary, Gini criterion, terminal
nodes are either pure or cannot be split further) on the dataset given below. What would the
training error be, given as a percentage? Why? [Hint: You can do this by inspection, without
any significant calculations.]

Y A B C
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 1
1 0 1 1
0 1 0 0
1 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1

3.2 Investigating Impurity Measures3

1. Consider a data set with 400 data points from class C1 and 400 data points from class C2 .
Suppose that a tree model A splits these into (300, 100) at the first leaf node and (100, 300)
at the second leaf node, where (n,m) denotes that n points are assigned to C1 and m points
are assigned to C2 . Similarly, suppose that a second tree model B splits them into (200, 400)
and (200, 0). Show that the misclassification rates for the two trees are equal, but that the
cross-entropy and Gini impurity measures are both lower for tree B than for tree A.

3.3 Trees on the Banana Dataset

The official sklearn documentation provides code that constructs a decision tree and visualizes
the decision boundary on the “Iris4 dataset” (http://scikit-learn.org/stable/auto_
examples/tree/plot_iris.html#example-tree-plot-iris-py). Note that the sklearn
implementation of decision trees is a bit different from that described in lecture: they just build to
a certain depth, without a pruning step.

1. Modify the code referenced above to work on the Banana dataset. The default class labels
are -1 and 1 in the given data files, but for the visualization code snippet to work, you will
have to modify the class labels to 0 and 1. Note that the Iris dataset is a multiclass problem
with 3 classes, while the Banana dataset is a binary dataset.

2. Run your code for different depths of decision trees, from 1 through 10, and briefly describe
your observations of the decision surface visualization. [Use the default values for all other
parameters.]

3. Plot the train and test errors as a function of the depth. Again, give a brief description of
your observations.

3From Bishop’s Pattern Recognition and Machine Learning, Problem 14.11
4https://archive.ics.uci.edu/ml/datasets/Iris

3

http://scikit-learn.org/stable/auto_examples/tree/plot_iris.html#example-tree-plot-iris-py
http://scikit-learn.org/stable/auto_examples/tree/plot_iris.html#example-tree-plot-iris-py
https://archive.ics.uci.edu/ml/datasets/Iris


4. [Optional] Experiment with the other hyperparameters provided by DecisionTreeClassifier
and find the combination giving the smallest test error. Summarize what you learn.

4 Bagging5 [Optional Problem]

Consider a regression problem where we wish to learn function y(x). Suppose we learn M functions
ŷ1(x), . . . , ŷM (x). The predictions of each of these functions can be expressed as the sum of the
true prediction plus an error term

ŷm(x) = y(x) + εm(x)

The expected squared-error of the function is then given by Ex[εm(x)2]. The average squared-error
of the models acting individually is therefore

Eav =
1

M

M∑
m=1

Ex[εm(x)2]

Bagging involves constructing the final function as an average over the M functions:

ŷbag(x) =
1

M

M∑
m=1

ŷm(x)

The error of bagging is therefore

εbag(x) = ŷbag(x)− y(x) =
1

M

M∑
m=1

εm(x)

The expected squared-error is
Ebag = Ex[εbag(x)2]

1. [Optional] Assuming that the individual errors εm(x) have mean zero and are uncorrelated,
that is, Ex[εm(x)] = 0 and Ex[εm(x)εl(x)] = 0 for m 6= l, show that

Ebag =
1

M
Eav

2. [Optional] In practice, however, the errors may be highly correlated. Nevertheless, using
Jensen’s inequality for the special case of the convex function f(x) = x2, show that the
average expected squared-error Eav of the individual functions and the expected error of
bagging Ebag satisfy Ebag ≤ Eav, without any assumptions on εm(x).

Jensen’s inequality can be stated as follows: For a convex function f(x), f(E[X]) ≤ E[f(X)].

This can easily be generalized to arbitrary convex functions E(y) of the error.

5Based on a problem from Bishop’s Pattern Recognition and Machine Learning.
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5 AdaBoost

5.1 Implementation

In this problem, you will implement AdaBoost, one of the most popular techniques in ensemble
methods.

1. Implement AdaBoost for the Banana dataset with decision trees of depth 3 as the weak
classifiers (also known as “base classifiers”). Use the decision tree implementation from
sklearn as in 3.3. The fit function of DecisionTreeClassifier has a parameter
sample weight, which you can use to weigh training examples differently during various
rounds of AdaBoost.

2. [Optional] Visualize the AdaBoost training procedure for different numbers of rounds from 1
through 10. Plot the decision surface, and the training examples, such that training samples
with larger weights in any round are represented as larger points compared to those with
smaller weights. Provide a brief description of your observations.

3. Plot the train and test errors as a function of the number of rounds from 1 through 10. Again,
give a brief description of your observations.

6 Gradient Boosting Machines

Recall the general gradient boosting algorithm6, for a given loss function ` and a hypothesis space
F of regression functions (i.e. functions mapping from the input space to R):

1. Initialize f0(x) = 0.

2. For m = 1 to M :

(a) Compute:

gm =

 ∂

∂f(xi)

n∑
i=1

` {yi, f(xi)}

∣∣∣∣∣
f(xi)=fm−1(xi)

n

i=1

(b) Fit regression model to −gm:

hm = arg min
h∈F

n∑
i=1

((−gm)i − h(xi))
2
.

(c) Choose fixed step size νm = ν ∈ (0, 1], or take

νm = arg min
ν>0

n∑
i=1

` {yi, fm−1(xi) + νhm(xi)} .

6Besides the lecture slides, you can find an accessible discussion of this approach in http://www.saedsayad.
com/docs/gbm2.pdf, in one of the original references http://statweb.stanford.edu/˜jhf/ftp/trebst.pdf,
and in this review paper http://web.stanford.edu/˜hastie/Papers/buehlmann.pdf.
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(d) Take the step:
fm(x) = fm−1(x) + νmhm(x)

3. Return fM .

In this problem we’ll derive two special cases of the general gradient boosting framework: L2-
Boosting and BinomialBoost.

1. Consider the regression framework, where Y = R. Suppose our loss function is given by

`(ŷ, y) =
1

2
(ŷ − y)

2
,

and at the beginning of the m’th round of gradient boosting, we have the function fm−1(x).
Show that the hm chosen as the next basis function is given by

hm = arg min
h∈F

n∑
i=1

[(yi − fm−1(xi))− h(xi)]
2
.

In other words, at each stage we find the weak prediction function hm ∈ F that is the best fit
to the residuals from the previous stage. [Hint: Once you understand what’s going on, this is
a pretty easy problem.]

2. Now let’s consider the classification framework, where Y = {−1, 1}. In lecture, we noted that
AdaBoost corresponds to forward stagewise additive modeling with the exponential loss, and
that the exponential loss not very robust to outliers (i.e. outliers can have a large effect on
the final prediction function). Instead, let’s consider instead the logistic loss

`(m) = ln
(
1 + e−m

)
,

where m = yf(x) is the margin. Similar to what we did in the L2-Boosting question, write
an expression for hm as an argmin over F .
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