Bayesian Methods (Lab)

David Rosenberg

New York University

October 29, 2016

Coin Flipping

• Parameter space $\theta \in \Theta = [0, 1]$:

 $\mathbb{P}(\mathsf{Heads} \,|\, \theta) = \theta.$

• Data
$$\mathcal{D} = \{H, H, T, T, T, T, T, H, ..., T\}$$

- n_h: number of heads
- *n_t*: number of tails
- Likelihood model (Bernoulli Distribution):

$$p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• (probability of getting the flips in the order they were received)

Coin Flipping: Beta Prior

• Prior:

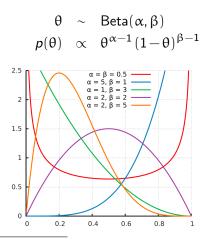


Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

David Rosenberg (New York University)

DS-GA 1003

October 29, 2016 3 / 20

Coin Flipping: Beta Prior

• Prior:

$$\begin{array}{l} \theta \quad \sim \quad \mathsf{Beta}(h,t) \\ \rho(\theta) \quad \propto \quad \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

Coin Flipping: Posterior

• Prior:

$$\begin{array}{ll} \theta & \sim & \operatorname{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Likelihood model:

$$\boldsymbol{p}(\mathcal{D} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{n_h} \left(1 - \boldsymbol{\theta} \right)^{n_t}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto p(\theta)p(\mathcal{D} \mid \theta)$$

$$\propto \theta^{h-1} (1-\theta)^{t-1} \times \theta^{n_h} (1-\theta)^{n_t}$$

$$= \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

Posterior is Beta

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

$$\theta \mid \mathcal{D} \sim \text{Beta}(h+n_h, t+n_t)$$

• Interpretation:

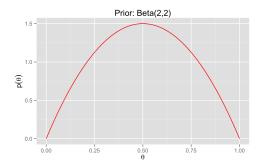
- Prior initializes our counts with *h* heads and *t* tails.
- Posterior increments counts by observed n_h and n_t .

Example: Coin Flipping

• Suppose we have a coin, possibly biased

 $\mathbb{P}(\mathsf{Heads} \,|\, \theta) = \theta.$

- Parameter space $\theta \in \Theta = [0, 1]$.
- Prior distribution: $\theta \sim Beta(2, 2)$.

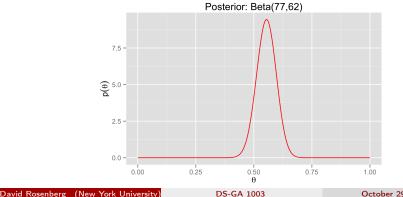


Example: Coin Flipping

- Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:
- Heads: 75 Tails: 60

•
$$\hat{\theta}_{\mathsf{MLE}} = \frac{75}{75+60} \approx 0.556$$

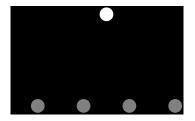
• Posterior distribution: $\theta \mid D \sim \text{Beta}(77, 62)$:



Naive Bayes: A Generative Model for Classification

•
$$\mathfrak{X} = \left\{ \left(X_1, X_2, X_3, X_4 \right) \in \left\{ 0, 1 \right\}^4 \right) \right\}$$
 $\mathfrak{Y} = \left\{ 0, 1 \right\}$ be a class label.

• Consider the Bayesian network depicted below:



• BN structure implies joint distribution factors as:

 $p(x_1, x_2, x_3, x_4, y) = p(y)p(x_1 \mid y)p(x_2 \mid y)p(x_3 \mid y)p(x_4 \mid y)$

• Features X_1, \ldots, X_4 are independent given the class label Y.

KPM Figure 10.2(a).

David Rosenberg (New York University)

Example: Message Classification

- $\mathcal{X} = \{ \mathsf{Message Text} \}$
- $\mathcal{Y} = \{ \mathsf{BUSINESS}, \mathsf{PERSONAL} \}$
- Training Data
 - BUSINESS
 - "Lunch meeting?"
 - "Expenses submitted EOM."
 - "LOL"
 - PERSONAL
 - "Meet for lunch? EOM"
 - "LOL"

Bag of Words Representation (Bernoulli Version)

• Represent a message by the set of words it contains:

- ignores word order
- ignores word count (some bag of words models keep the count)
- typically ignores punctuation and capitalization
- Generate vocabulary from training data:

 $W = \{eom, expenses, for, lol, lunch, meet, meeting, submitted, UNKNOWN\}$

- Add in an UNKNOWN value, in case we encounter new words in deployment.
- Message *M* is represented by binary vector of length |W| = 9.

Bag of Words Representation (Bernoulli Version)

- Input: "Lunch? EOM" \implies $M = \{$ lunch, eom $\}$:
- Vector representation: $x = (x_1 \dots, x_{|W|})$

Word (w)	Xw
lunch	1
meeting	0
expenses	0
submitted	0
eom	1
meet	0
for	0
lol	0
UNKNOWN	0

Bernoulli Naive Bayes Model

• Joint probability of message $x = (x_1, \dots, x_{|W|})$ and class y is

$$p(x,y) = p(y) \prod_{i=1}^{|W|} p(x_i | y),$$

where each $x_i \in \{0, 1\}$, and $y \in \{B, P\}$.

• We need to estimate:

$$\mathbb{P}(Y = \mathsf{B})$$
$$\mathbb{P}(Y = \mathsf{P})$$
$$\mathbb{P}(X_w = 1 \mid Y = \mathsf{B}) \ \forall w \in W$$
$$\mathbb{P}(X_w = 1 \mid Y = \mathsf{P}) \ \forall w \in W$$

Bernoulli Naive Bayes: Parameter Estimation

• Using relative frequencies in training, we have:

$$\hat{p}(Y=B) = 3/5$$
 $\hat{p}(Y=P) = 2/5$

and

Word (w)	$\hat{p}(X_w = 1 \mid B)$	$\hat{p}(X_w = 1 \mid P)$	
lunch	1/3	1/2	
meeting	1/3	0	
expenses	1/3	0	
submitted	1/3	0	
eom	1/3	1/2	
meet	0	1/2	
for	0	1/2	
lol	1/3	1/2	
UNKNOWN	0	0	

Naive Bayes Prediction for "Lunch? EOM"

Word (w)	Xw	$\hat{\rho}(X_w = 1 \mid B)$	$\hat{p}(x_w \mid B)$	$\hat{\rho}(X_w = 1 \mid P)$	$\hat{p}(x_w \mid P)$
lunch	1	1/3	1/3	1/2	1/2
meeting	0	1/3	2/3	0	1
expenses	0	1/3	2/3	0	1
submitted	0	1/3	2/3	0	1
eom	1	1/3	1/3	1/2	1/2
meet	0	0	1	1/2	1/2
for	0	0	1	1/2	1/2
lol	0	1/3	2/3	1/2	1/2
UNKNOWN	0	0	1	0	1

$$p(M | B) = \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{2}{3} \cdot 1 = \frac{16}{243} \approx .07$$

$$p(M | P) = \frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{32} = .03$$

Naive Bayes Prediction for "Lunch? EOM"

- Input: "Lunch? EOM" \implies $M = \{$ Iunch, eom $\}$
- Message probability, conditional on message type:

$$p(M | B) = \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{2}{3} \cdot 1 = \frac{16}{243} \approx .07$$

$$p(M | P) = \frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{32} = .03$$

- What does it mean that p(M | P) = .03?
 - 3% of personal messages have same bag of words as M.

Naive Bayes Prediction

- Input: "Lunch? EOM" \implies $M = \{$ Iunch, eom $\}$
- Output:

$$p(\text{BUSINESS} \mid M) \propto p(B)p(M \mid B)$$

$$= \frac{3}{5} \cdot \frac{16}{243} = \frac{16}{405}$$

$$p(\text{PERSONAL} \mid M) \propto p(P)p(M \mid P)$$

$$= \frac{2}{5} \cdot \frac{1}{32} = \frac{1}{90}$$

• Now just renormalize:

$$p(\text{BUSINESS} \mid M) = \frac{16}{405} / \left(\frac{1}{90} + \frac{16}{405}\right) \approx 0.78$$
$$p(\text{PERSONAL} \mid M) = \frac{1}{90} / \left(\frac{1}{90} + \frac{16}{405}\right) \approx 0.22$$

Naive Bayes Prediction: Issue With Zeros

- Input: M = "Meeting?"
- Output:

 $p(\text{BUSINESS} | M) \propto \frac{1}{3}$ $p(\text{PERSONAL} | M) \propto 0$

Renormalizing:

p(BUSINESS | M) = 1p(PERSONAL | M) = 0

- This is bad:
 - Never want to predict probability 0 if something is possible.

• Worse: Zero counts common for small sample sizes and rare features.

Laplace Smoothing

- Laplace Smoothing is a traditional fix to the 0 count issue.
- Idea is to add 1 to every empirical count:

$$\hat{\rho}(\text{lunch} | \text{PERSONAL}) = \frac{1 + \sum 1(\text{lunch and PERSONAL})}{1 + \sum 1(\text{PERSONAL})}$$

- The added 1 is called a pseudocount.
- Like assuming every outcome that can occur was observed at least once.
- Seems to solve the problem but is there a more principled approach?

Bayesian Naive Bayes

- Be **Bayesian** and put a beta prior on each parameter.
- **Option 1**: Use posterior mean as point estimate for each parameter, then continue as before.
 - Laplace smoothing is a special case, in which priors are all Beta(1,1).
- Option 2: Go full Bayesian.
 - No parameter estimates. Base everything on posterior $\theta \,|\, {\mathfrak D}.$
- Predict with the predictive distribution:

 $y \mid x, \mathcal{D}$

• Recall, this is integrating out the parameter $\boldsymbol{\theta}$ w.r.t. the posterior distribution.