Bayesian Methods (Lab)

David Rosenberg

New York University

October 29, 2016

Coin Flipping

- Parameter space $\theta \in \Theta=[0,1]$:

$$
\mathbb{P}(\text { Heads } \mid \theta)=\theta
$$

- Data $\mathcal{D}=\{H, H, T, T, T, T, T, H, \ldots, T\}$
- n_{h} : number of heads
- n_{t} : number of tails
- Likelihood model (Bernoulli Distribution):

$$
p(\mathcal{D} \mid \theta)=\theta^{n_{h}}(1-\theta)^{n_{t}}
$$

- (probability of getting the flips in the order they were received)

Coin Flipping: Beta Prior

- Prior:

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

Coin Flipping: Beta Prior

- Prior:

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}(h, t) \\
p(\theta) & \propto \theta^{h-1}(1-\theta)^{t-1}
\end{aligned}
$$

- Mean of Beta distribution:

$$
\mathbb{E} \theta=\frac{h}{h+t}
$$

Coin Flipping: Posterior

- Prior:

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}(h, t) \\
p(\theta) & \propto \theta^{h-1}(1-\theta)^{t-1}
\end{aligned}
$$

- Likelihood model:

$$
p(\mathcal{D} \mid \theta)=\theta^{n_{h}}(1-\theta)^{n_{t}}
$$

- Posterior density:

$$
\begin{aligned}
p(\theta \mid \mathcal{D}) & \propto p(\theta) p(\mathcal{D} \mid \theta) \\
& \propto \theta^{h-1}(1-\theta)^{t-1} \times \theta^{n_{h}}(1-\theta)^{n_{t}} \\
& =\theta^{h-1+n_{h}}(1-\theta)^{t-1+n_{t}}
\end{aligned}
$$

Posterior is Beta

- Prior:

$$
\begin{aligned}
\theta & \sim \operatorname{Beta}(h, t) \\
p(\theta) & \propto \theta^{h-1}(1-\theta)^{t-1}
\end{aligned}
$$

- Posterior density:

$$
p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_{h}}(1-\theta)^{t-1+n_{t}}
$$

- Posterior is in the beta family:

$$
\theta \mid \mathcal{D} \sim \operatorname{Beta}\left(h+n_{h}, t+n_{t}\right)
$$

- Interpretation:
- Prior initializes our counts with h heads and t tails.
- Posterior increments counts by observed n_{h} and n_{t}.

Example: Coin Flipping

- Suppose we have a coin, possibly biased

$$
\mathbb{P}(\text { Heads } \mid \theta)=\theta
$$

- Parameter space $\theta \in \Theta=[0,1]$.
- Prior distribution: $\theta \sim \operatorname{Beta}(2,2)$.

Example: Coin Flipping

- Next, we gather some data $\mathcal{D}=\{H, H, T, T, T, T, T, H, \ldots, T\}$:
- Heads: 75 Tails: 60
- $\hat{\theta}_{\text {MLE }}=\frac{75}{75+60} \approx 0.556$
- Posterior distribution: $\theta \mid \operatorname{D} \sim \operatorname{Beta}(77,62)$:

Posterior: Beta(77,62)

Naive Bayes: A Generative Model for Classification

- $\left.x=\left\{\left(X_{1}, X_{2}, x_{3}, X_{4}\right) \in\{0,1\}^{4}\right)\right\} \quad y=\{0,1\}$ be a class label.
- Consider the Bayesian network depicted below:

- BN structure implies joint distribution factors as:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, y\right)=p(y) p\left(x_{1} \mid y\right) p\left(x_{2} \mid y\right) p\left(x_{3} \mid y\right) p\left(x_{4} \mid y\right)
$$

- Features X_{1}, \ldots, X_{4} are independent given the class label Y.

Example: Message Classification

- $X=\{$ Message Text $\}$
- $y=\{B U S I N E S S$, PERSONAL $\}$
- Training Data
- BUSINESS
- "Lunch meeting?"
- "Expenses submitted EOM."
- "LOL"
- PERSONAL
- "Meet for lunch? EOM"
- "LOL"

Bag of Words Representation (Bernoulli Version)

- Represent a message by the set of words it contains:
- ignores word order
- ignores word count (some bag of words models keep the count)
- typically ignores punctuation and capitalization
- Generate vocabulary from training data:
$W=\{$ eom,expenses,for,lol,lunch,meet,meeting,submitted,UNKNOWN $\}$
- Add in an UNKNOWN value, in case we encounter new words in deployment.
- Message M is represented by binary vector of length $|W|=9$.

Bag of Words Representation (Bernoulli Version)

- Input: "Lunch? EOM" $\Longrightarrow M=\{$ lunch, eom\}:
- Vector representation: $x=\left(x_{1} \ldots, x_{|W|}\right)$

Word (w)	x_{w}
lunch	1
meeting	0
expenses	0
submitted	0
eom	1
meet	0
for	0
lol	0
UNKNOWN	0

Bernoulli Naive Bayes Model

- Joint probability of message $x=\left(x_{1}, \ldots, x_{|W|}\right)$ and class y is

$$
p(x, y)=p(y) \prod_{i=1}^{|W|} p\left(x_{i} \mid y\right)
$$

where each $x_{i} \in\{0,1\}$, and $y \in\{B, P\}$.

- We need to estimate:

$$
\begin{gathered}
\mathbb{P}(Y=\mathrm{B}) \\
\mathbb{P}(Y=\mathrm{P}) \\
\mathbb{P}\left(X_{w}=1 \mid Y=\mathrm{B}\right) \forall w \in W \\
\mathbb{P}\left(X_{w}=1 \mid Y=\mathrm{P}\right) \forall w \in W
\end{gathered}
$$

Bernoulli Naive Bayes: Parameter Estimation

- Using relative frequencies in training, we have:

$$
\hat{p}(Y=B)=3 / 5 \quad \hat{p}(Y=P)=2 / 5
$$

and

Word (w)	$\hat{p}\left(X_{w}=1 \mid \mathrm{B}\right)$	$\hat{p}\left(X_{w}=1 \mid \mathrm{P}\right)$
lunch	$1 / 3$	$1 / 2$
meeting	$1 / 3$	0
expenses	$1 / 3$	0
submitted	$1 / 3$	0
eom	$1 / 3$	$1 / 2$
meet	0	$1 / 2$
for	0	$1 / 2$
lol	$1 / 3$	$1 / 2$
UNKNOWN	0	0

Naive Bayes Prediction for "Lunch? EOM"

Word (w)	x_{w}	$\hat{p}\left(X_{w}=1 \mid \mathrm{B}\right)$	$\hat{p}\left(x_{w} \mid B\right)$	$\hat{p}\left(X_{w}=1 \mid \mathrm{P}\right)$	$\hat{p}\left(x_{w} \mid \mathrm{P}\right)$
lunch	1	$1 / 3$	$\mathbf{1 / 3}$	$1 / 2$	$\mathbf{1} / \mathbf{2}$
meeting	0	$1 / 3$	$\mathbf{2} / \mathbf{3}$	0	$\mathbf{1}$
expenses	0	$1 / 3$	$\mathbf{2 / 3}$	0	$\mathbf{1}$
submitted	0	$1 / 3$	$\mathbf{2 / 3}$	0	$\mathbf{1}$
eom	1	$1 / 3$	$\mathbf{1 / 3}$	$1 / 2$	$\mathbf{1} / \mathbf{2}$
meet	0	0	$\mathbf{1}$	$1 / 2$	$\mathbf{1} / \mathbf{2}$
for	0	0	$\mathbf{1}$	$1 / 2$	$\mathbf{1} / \mathbf{2}$
lol	0	$1 / 3$	$\mathbf{2 / 3}$	$1 / 2$	$\mathbf{1} / \mathbf{2}$
UNKNOWN	0	0	$\mathbf{1}$	0	$\mathbf{1}$

$$
\begin{aligned}
& p(M \mid B)=\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{2}{3} \cdot 1=\frac{16}{243} \approx .07 \\
& p(M \mid P)=\frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{32}=.03
\end{aligned}
$$

Naive Bayes Prediction for "Lunch? EOM"

- Input: "Lunch? EOM" $\Longrightarrow M=\{$ lunch, eom $\}$
- Message probability, conditional on message type:

$$
\begin{aligned}
& p(M \mid B)=\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot 1 \cdot 1 \cdot \frac{2}{3} \cdot 1=\frac{16}{243} \approx .07 \\
& p(M \mid P)=\frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{32}=.03
\end{aligned}
$$

- What does it mean that $p(M \mid \mathrm{P})=.03$?
- 3% of personal messages have same bag of words as M.

Naive Bayes Prediction

- Input: "Lunch? EOM" $\Longrightarrow M=\{$ lunch, eom $\}$
- Output:

$$
\begin{aligned}
p(\mathrm{BUSINESS} \mid M) & \propto p(\mathrm{~B}) p(M \mid \mathrm{B}) \\
& =\frac{3}{5} \cdot \frac{16}{243}=\frac{16}{405} \\
p(\mathrm{PERSONAL} \mid M) & \propto p(\mathrm{P}) p(M \mid \mathrm{P}) \\
& =\frac{2}{5} \cdot \frac{1}{32}=\frac{1}{90}
\end{aligned}
$$

- Now just renormalize:

$$
\begin{aligned}
p(\text { BUSINESS } \mid M) & =\frac{16}{405} /\left(\frac{1}{90}+\frac{16}{405}\right) \approx 0.78 \\
p(\text { PERSONAL } \mid M) & =\frac{1}{90} /\left(\frac{1}{90}+\frac{16}{405}\right) \approx 0.22
\end{aligned}
$$

Naive Bayes Prediction: Issue With Zeros

- Input: $M=$ ="Meeting?"
- Output:

$$
\begin{aligned}
p(\text { BUSINESS } \mid M) & \propto \frac{1}{3} \\
p(\text { PERSONAL } \mid M) & \propto 0
\end{aligned}
$$

- Renormalizing:

$$
\begin{aligned}
p(\mathrm{BUSINESS} \mid M) & =1 \\
p(\mathrm{PERSONAL} \mid M) & =0
\end{aligned}
$$

- This is bad:
- Never want to predict probability 0 if something is possible.
- Worse: Zero counts common for small sample sizes and rare features.

Laplace Smoothing

- Laplace Smoothing is a traditional fix to the 0 count issue.
- Idea is to add 1 to every empirical count:

$$
\hat{p}(\text { lunch } \mid \text { PERSONAL })=\frac{1+\sum 1(\text { lunch and PERSONAL })}{1+\sum 1(\text { PERSONAL })}
$$

- The added 1 is called a pseudocount.
- Like assuming every outcome that can occur was observed at least once.
- Seems to solve the problem - but is there a more principled approach?

Bayesian Naive Bayes

- Be Bayesian and put a beta prior on each parameter.
- Option 1: Use posterior mean as point estimate for each parameter, then continue as before.
- Laplace smoothing is a special case, in which priors are all Beta $(1,1)$.
- Option 2: Go full Bayesian.
- No parameter estimates. Base everything on posterior $\theta \mid \mathcal{D}$.
- Predict with the predictive distribution:

$$
y \mid x, \mathcal{D}
$$

- Recall, this is integrating out the parameter θ w.r.t. the posterior distribution.

