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K -Means Clustering

Example: Old Faithful Geyser

Looks like two clusters.
How to find these clusters algorithmically?
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K -Means Clustering

k-Means: By Example

Standardize the data.
Choose two cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(a).
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K -Means Clustering

k-means: by example

Assign each point to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(b).
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K -Means Clustering

k-means: by example

Compute new class centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(c).
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K -Means Clustering

k-means: by example

Assign points to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(d).
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K -Means Clustering

k-means: by example

Compute cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(e).
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K -Means Clustering

k-means: by example

Iterate until convergence.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(i).
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K -Means Clustering

k-means: formalization

Dataset D= {x1, . . . ,xn} ∈ Rd

Goal (version 1): Partition data into k clusters.
Goal (version 2): Partition Rd into k regions.
Let µ1, . . . ,µk denote cluster centers.
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K -Means Clustering

k-means: formalization

For each xi , use a one-hot encoding to designate membership:

ri = (0,0, . . . ,0,0,1,0,0) ∈ Rk

Let
ric = 1(xi assigned to cluster c).

Then
ri = (ri1, ri2, . . . , rik) .
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K -Means Clustering

k-means: objective function

Find cluster centers and cluster assignments minimizing

J(r ,µ) =
n∑

i=1

k∑
c=1

ric‖xi −µc‖2.

Is objective function convex?
What’s the domain of J?
r ∈ {0,1}n×k , which is not a convex set...
So domain of J is not convex =⇒ J is not a convex function
We should expect local minima.
Could replace ‖ · ‖2 with something else:

e.g. using ‖ · ‖ (or any distance metric) gives k-medoids.
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K -Means Clustering

k-means algorithm

For fixed r (cluster assignments), minimizing over µ is easy:

J(r ,µ) =

n∑
i=1

k∑
c=1

ric‖xi −µc‖2

=

k∑
c=1

n∑
i=1

ric‖xi −µc‖2︸ ︷︷ ︸
=Jc

Jc(µc) =
∑

{i |xibelongs to cluster c}

‖xi −µc‖2

Jc is minimized by

µc =mean({xi | xi belongs to cluster c})
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K -Means Clustering

k-means algorithm

For fixed µ (cluster centers), minimizing over r is easy:

J(r ,µ) =

n∑
i=1

k∑
c=1

ric‖xi −µc‖2

For each i , exactly one of the following terms is nonzero:

ri1‖xi −µ1‖2, ri2‖xi −µ2‖2, . . . , rik‖xi −µk‖2

Take
ric = 1(c = argmin

j
‖xi −µj‖2)

That is, assign xi to cluster c with minimum distance

‖xi −µc‖2
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K -Means Clustering

k-means algorithm (summary)

We will use an alternating minimization algorithm:
1 Choose initial cluster centers µ= (µ1, . . . ,µk).

e.g. choose k randomly chosen data points

2 Repeat

1 For given cluster centers, find optimal cluster assignments:

rnew
ic = 1(c = argmin

j
‖xi −µj‖2)

2 Given cluster assignments, find optimal cluster centers:

µnew
c = argmin

m∈Rd

;
∑

{i |ric=1}

‖xi −µc‖2
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K -Means Clustering

k-Means Algorithm: Convergence

Note: Objective value never increases in an update.

(Obvious: worst case, everything stays the same)

Consider the sequence of objective values: J1,J2,J3, . . .

monotonically decreasing
bounded below by zero

Therefore, k-Means objective value converges to inft Jt .
Reminder: This is convergence to a local minimum.
Best to repeat k-means several times, with different starting points
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K -Means Clustering

k-Means: Objective Function Convergence

Blue circles after “E” step: assigning each point to a cluster
Red circles after “M” step: recomputing the cluster centers

From Bishop’s Pattern recognition and machine learning, Figure 9.2.
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K -Means Clustering

k-Means Algorithm: Standardizing the data

With standardizing:
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K -Means Clustering

k-Means Algorithm: Standardizing the data

Without standardizing:
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k-Means: Failure Cases

k-Means: Suboptimal Local Minimum

The clustering for k = 3 below is a local minimum, but suboptimal:

From Sontag’s DS-GA 1003, 2014, Lecture 8.
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Gaussian Mixture Models

Probabilistic Model for Clustering

Let’s consider a generative model for the data.
Suppose

1 There are k clusters.
2 We have a probability density for each cluster.

Generate a point as follows
1 Choose a random cluster z ∈ {1,2, . . . ,k}.

Z ∼Multi(π1, . . . ,πk ).

2 Choose a point from the distribution for cluster Z .

X | Z = z ∼ p(x | z).
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Gaussian Mixture Models

Gaussian Mixture Model (k = 3)

1 Choose Z ∈ {1,2,3} ∼Multi
(1

3 ,
1
3 ,

1
3

)
.

2 Choose X | Z = z ∼ N (X | µz ,Σz).
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Gaussian Mixture Models

Gaussian Mixture Model: Joint Distribution

Factorize joint according to Bayes net:

p(x ,z) = p(z)p(x | z)

= πzN (x | µz ,Σz)

πz is probability of choosing cluster z .
X | Z = z has distribution N(µz ,Σz).
z corresponding to x is the true cluster assignment.
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Gaussian Mixture Models

Latent Variable Model

Back in reality, we observe X , not (X ,Z ).
Cluster assignment Z is called a hidden variable.

Definition
A latent variable model is a probability model for which certain variables
are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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Gaussian Mixture Models

Model-Based Clustering

We observe X = x .
The conditional distribution of the cluster Z given X = x is

p(z | X = x) = p(x ,z)/p(x)

The conditional distribution is a soft assignment to clusters.
A hard assignment is

z∗ = argmin
z∈{1,...,k}

P(Z = z | X = x).

So if we have the model, clustering is trival.
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Gaussian Mixture Models

Estimating/Learning the Gaussian Mixture Model

We’ll use the common acronym GMM.
What does it mean to “have” or “know” the GMM?
It means knowing the parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

We have a probability model: let’s find the MLE.
Suppose we have data D= {x1, . . . ,xn}.
We need the model likelihood for D.
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Gaussian Mixture Models

Gaussian Mixture Model: Marginal Distribution

Since we only observe X , we need the marginal distribution:

p(x) =

k∑
z=1

p(x ,z)

=

k∑
z=1

πzN (x | µz ,Σz)

Note that p(x) is a convex combination of probability densities.
This is a common form for a probability model...
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Gaussian Mixture Models

Mixture Distributions (or Mixture Models)

Definition
A probability density p(x) represents a mixture distribution or mixture
model, if we can write it as a convex combination of probability
densities. That is,

p(x) =
k∑

i=1

wipi (x),

where wi > 0,
∑k

i=1wi = 1, and each pi is a probability density.

In our Gaussian mixture model, X has a mixture distribution.
More constructively, let S be a set of probability distributions:

1 Choose a distribution randomly from S .
2 Sample X from the chosen distribution.

Then X has a mixture distribution.
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Gaussian Mixture Models

Estimating/Learning the Gaussian Mixture Model

The model likelihood for D= {x1, . . . ,xn} is

L(π,µ,Σ) =

n∏
i=1

p(xi )

=

n∏
i=1

k∑
z=1

πzN (xi | µz ,Σz) .

As usual, we’ll take our objective function to be the log of this:

J(π,µ,Σ) =

n∑
i=1

log

{
k∑

z=1

πzN (xi | µz ,Σz)

}
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Gaussian Mixture Models

Properties of the GMM Log-Likelihood

GMM log-likelihood:

J(π,µ,Σ) =

n∑
i=1

log

{
k∑

z=1

πzN (xi | µz ,Σz)

}
Let’s compare to the log-likelihood for a single Gaussian:

n∑
i=1

logN (xi | µ,Σ)

= −
nd

2
log (2π)−

n

2
log |Σ|−

1
2

n∑
i=1

(xi −µ)
′Σ−1(xi −µ)

For a single Gaussian, the log cancels the exp in the Gaussian density.
=⇒ Things simplify a lot.

For the GMM, the sum inside the log prevents this cancellation.
=⇒ Expression more complicated. No closed form expression for MLE.
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Issues with MLE for GMM

Identifiability Issues for GMM

Suppose we have found parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

that are at a local minimum.

What happens if we shuffle the clusters? e.g. Switch the labels for
clusters 1 and 2.

We’ll get the same likelihood. How many such equivalent settings are
there?

Assuming all clusters are distinct, there are k! equivalent solutions.

Not a problem per se, but something to be aware of.
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Issues with MLE for GMM

Singularities for GMM

Consider the following GMM for 7 data points:

Let σ2 be the variance of the skinny component.
What happens to the likelihood as σ2→ 0?
In practice, we end up in local minima that do not have this problem.

Or keep restarting optimization until we do.

Bayesian approach or regularization will also solve the problem.
From Bishop’s Pattern recognition and machine learning, Figure 9.7.
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Issues with MLE for GMM

Gradient Descent / SGD for GMM

What about running gradient descent or SGD on

J(π,µ,Σ) = −

n∑
i=1

log

{
k∑

z=1

πzN (xi | µz ,Σz)

}
?

Can be done – but need to be clever about it.
Each matrix Σ1, . . . ,Σk has to be positive semidefinite.
How to maintain that constraint?

Rewrite Σi =MiM
T
i , where Mi is an unconstrained matrix.

Then Σi is positive semidefinite.

But we actually prefer positive definite, to avoid singularities.
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Issues with MLE for GMM

Cholesky Decomposition for SPD Matrices

Theorem

Every symmetric positive definite matrix A ∈ Rd×d has a unique Cholesky
decomposition:

A= LLT ,

where L a lower triangular matrix with positive diagonal elements.

A lower triangular matrix has half the number of parameters.
Symmetric positive definite is better because avoids singularities.
Requires a non-negativity constraint on diagonal elements.

e.g. Use projected SGD method like we did for the Lasso.
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The EM Algorithm for GMM

MLE for Gaussian Model

Let’s start by considering the MLE for the Gaussian model.
For data D= {x1, . . . ,xn}, the log likelihood is given by

n∑
i=1

logN (xi | µ,Σ)=−
nd

2
log (2π)−

n

2
log |Σ|−

1
2

n∑
i=1

(xi−µ)
′Σ−1(xi−µ).

With some calculus, we find that the MLE parameters are

µMLE =
1
n

n∑
i=1

xi

ΣMLE =
1
n

n∑
i=1

(xi −µMLE)(xi −µMLE)
T

For GMM, If we knew the cluster assignment zi for each xi ,
we could compute the MLEs for each cluster.

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 34 / 43



The EM Algorithm for GMM

Cluster Responsibilities: Some New Notation

Denote the probability that observed value xi comes from cluster j by

γ
j
i = P(Z = j | X = xi ) .

The responsibility that cluster j takes for observation xi .
Computationally,

γ
j
i = P(Z = j | X = xi ) .

= p (Z = j ,X = xi )/p(x)

=
πjN (xi | µj ,Σj)∑k

c=1πcN (xi | µc ,Σc)

The vector
(
γ1
i , . . . ,γ

k
i

)
is exactly the soft assignment for xi .

Let nc =
∑n

i=1γ
c
i be the number of points “soft assigned” to cluster c .
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The EM Algorithm for GMM

EM Algorithm for GMM: Overview

1 Initialize parameters µ,Σ,π.
2 “E step”. Evaluate the responsibilities using current parameters:

γ
j
i =

πjN (xi | µj ,Σj)∑k
c=1πcN (xi | µc ,Σc)

,

for i = 1, . . . ,n and j = 1, . . . ,k .
3 “M step”. Re-estimate the parameters using responsibilities:

µnew
c =

1
nc

n∑
i=1

γci xi

Σnew
c =

1
nc

n∑
i=1

γci (xi −µMLE)(xi −µMLE)
T

πnew
c =

nc
n
,

4 Repeat from Step 2, until log-likelihood converges.
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The EM Algorithm for GMM

EM for GMM

Initialization

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

After 5 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

After 20 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

Relation to K -Means

EM for GMM seems a little like k-means.
In fact, there is a precise correspondence.
First, fix each cluster covariance matrix to be σ2I .
As we take σ2→ 0, the update equations converge to doing k-means.
If you do a quick experiment yourself, you’ll find

Soft assignments converge to hard assignments.
Has to do with the tail behavior (exponential decay) of Gaussian.
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The EM Algorithm for GMM

Possible Topics for Next Time

In last lecture, will give high level view of several topics.
Possibilities:

General EM Algorithm.
Bandit problems.
LDA / Topic Models
Ranking problems.
Collaborative Filtering.
Generalization bounds.
Sequence models (maximum entropy Markov models, HMMs)
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