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Entropy

A Measure of Information?

Consider a discrete random variable X .
How much “information” do we gain from observing X?
Information ≈ “degree of surprise” from observing X = x .
If we know P(X = 0) = 1, then observing X = 0 gives no information.
If we know P(X = 0) = .999:

Observing X = 0 gives little information.
Observing X = 1 gives a lot of surprise / “information”

Information measure h(x) should depend on p(x):

Smaller p(x) =⇒ More information =⇒ Larger h(x)
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Entropy

Shannon Information Content of an Outcome

Definition
Let X ∈ X have PMF p(x). The Shannon information content of an
outcome x is

h(x) = log
(

1
p(x)

)
,

where the base of the log is 2. Information is measured in bits. (Or nats if
the base of the log is e.)

Less likely outcome gives more information.
Information is additive for independent events:

If X and Y are independent,

h(x ,y) = − logp(x ,y) = − log [p(x)p(y)]
= − logp(x)− logp(y)
= h(x)+h(y)
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Entropy

Entropy

Definition
Let X ∈ X have PMF p(x). The entropy of X is

H(X ) = Ep log
(

1
p(X )

)
= −

∑
x∈X

p(x) logp(x),

using convention that 0 log0= 0, since limx→0+ x logx = 0.

Entropy of X is the expected information gain from observing X .
Entropy only depends on distribution p, so we can write H(p).
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Entropy

Coding

Definition
A binary source code C is a mapping from X to finite 0/1 sequences.

Consider r.v. X ∈ X and binary source code C defined as:

x p(x) C (x)

1 1/2 0
2 1/4 10
3 1/8 110
4 1/8 111
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Entropy

Expected Code Length

Consider r.v. X ∈ X and binary source code C defined as:
x p(x) C (x) log 1

p(x)

1 1/2 0 log2 2= 1
2 1/4 10 log2 4= 2
3 1/8 110 log2 8= 3
4 1/8 111 log2 8= 3

The entropy is H(X ) = E log [1/p(x)]:

H(X ) =
1
2
(1)+

1
4
(2)+

1
8
(3)+

1
8
(3) = 1.75 bits.

The expected code length is

L(C ) =
1
2
(1)+

1
4
(2)+

1
8
(3)+

1
8
(3) = 1.75 bits.
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Entropy

Prefix Codes

A code is a prefix code if no codeword is a prefix of another.
Prefix codes can be represented on trees:

Each leaf node is a codeword.
It’s encoding represents the path from root to leaf.

From David MacKay’s Information Theory, Inference, and Learning Algorithms, Section 5.1.
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Entropy

Data Compression: What’s the Best Prefix Code?

For X ∼ p(x), we get best compression with codeword lengths

`∗(x)≈− logp(x).

Optimal bit length of x is the Shannon Information of x.
Then the expected codeword length is

L∗ = E [− logp(X )]

= H(X )

Entropy H(X ) gives a lower bound on coding performance.
Shannon’s Theorem says we can achieve H(X ) within 1 bit.
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Entropy

Shannon’s Source Coding Theorem

Theorem (Shannon’s Source Coding Theorem)

The expected length L of any binary prefix code for r.v. X is at least H(X ):

L> H(X ).

There exist codes with lengths `(x) = d− log2 p(x)e achieving

H(X )6 L< H(X )+1.

Notation dxe= ceil(x) = (smallest integer >x)
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Entropy

Shannon’s Source Coding Theorem: Summary

For any X ∼ p(x), ∃ code with L≈ H(X ).
Get arbitrarily close to H(X ) by grouping multiple X ’s and coding all
at once.
If we know the distribution of X , we can code optimally.

e.g. Use Huffman codes or arithmetic codes.

What if we don’t know p(x), and we use q(x) instead?
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Entropy

Coding with the Wrong Distribution: Core Calculation

Allow fractional code lengths: `q(x) = − logq(x)
Then expected length for coding X ∼ p(x) using `q(x) is

L = EX∼p(x)`q(X )

= −
∑
x

p(x) logq(x)

=
∑
x

p(x) log
[
p(x)

q(x)

1
p(x)

]
=
∑
x

p(x) log
p(x)

q(x)
+
∑

p(x) log
1

p(x)

= KL(p‖q)+H(p),

where KL(p‖q) is the Kullback-Leibler divergence between p and q.
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Entropy

Entropy, Cross-Entropy, and KL-Divergence

The Kullback-Leibler or “KL” Diverence is defined by

KL(p‖q) = Ep log
(
p(X )

q(X )

)
.

KL(p‖q): #(extra bits) needed if we code with q(x) instead of p(x).

The cross entropy for p(x) and q(x) is defined as

H(p,q) = −Ep logq(X ).

H(p,q): #(bits) needed to code X ∼ p(x) using q(x).

Summary:
H(p,q) = H(p)+KL(p‖q).
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Entropy

Coding with the Wrong Distribution: Integer Lengths

Theorem
If we code X ∼ p(x) using code lengths `(x) = d− log2 q(x)e, the expected
code length is bounded as

H(p)+KL(p‖q)6 Ep`(X )< H(p)+KL(p‖q)+1.

So with an implementable code (using integer codeword lengths), the
expected code length is within 1 bit of what could be achieved with
`(x) = − log2 q(x).
Proof is a slight tweak on the “core calculation”.
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Entropy

Jensen’s Inequality

Theorem (Jensen’s Inequality)

If f : X→ R is a convex function, and X ∈ X is a random variable, then

Ef (X )> f (EX ).

Moreover, if f is strictly convex, then equality implies that X = EX with
probability 1 (i.e. X is a constant).

e.g. f (x) = x2 is convex. So EX 2 > (EX )2. Thus

VarX = EX 2−(EX )2 > 0.
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Entropy

Gibbs Inequality (KL(p‖q)> 0)

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on X. Then

KL(p‖q)> 0,

with equality iff p(x) = q(x) for all x ∈ X.

KL divergence measures the “distance” between distributions.

Note:

KL divergence not a metric.
KL divergence is not symmetric.
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Gibbs Inequality: Proof

KL(p‖q) = Ep

[
− log

(
q(X )

p(X )

)]
> − log

[
Ep

(
q(X )

p(X )

)]
(Jensen’s)

= − log

 ∑
{x |p(x)>0}

p(x)
q(x)

p(x)


= − log

[∑
x∈X

q(x)

]
= − log1= 0.

Since − log is strictly convex, we have strict equality iff q(x)/p(x) is a
constant, which implies q = p .
Essentially the same proof for PDFs.
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KL-Divergence for Model Estimation

Suppose D= {x1, . . . ,xn} is a sample from unknown p(x) on X.
Hypothesis space: P some set of distributions on X.

Idea: Find q ∈ P that minimizes KL(p‖q):

argmin
q∈P

KL(p,q) = argmin
q∈P

Ep

[
log
(
p(X )

q(X )

)]

Don’t know p, so replace expectation by average over D:

argmin
q∈P

{
1
n

n∑
i=1

log
[
p(xi )

q(xi )

]}
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Entropy

Estimated KL-Divergence

The estimated KL-divergence:

1
n

n∑
i=1

log
[
p(xi )

q(xi )

]

=
1
n

n∑
i=1

logp(xi )−
1
n

n∑
i=1

logq(xi ).

The minimizer of this over q ∈ P is also

argmax
q∈P

n∑
i=1

logq(xi ).

This is exactly the objective for the MLE.
Minimizing KL between model and truth leads to MLE.
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