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A Measure of Information?

Consider a discrete random variable X.

How much “information” do we gain from observing X7

Information ~ “degree of surprise” from observing X = x.

If we know P(X =0) =1, then observing X =0 gives no information.
If we know P (X =0) =.999:

o Observing X =0 gives little information.
e Observing X =1 gives a lot of surprise / “information”

Information measure h(x) should depend on p(x):

e Smaller p(x) = More information = Larger h(x)
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Shannon Information Content of an Qutcome

Definition
Let X € X have PMF p(x). The Shannon information content of an

outcome x is
hix) = log (1> ,
p(x)

where the base of the log is 2. Information is measured in bits. (Or nats if
the base of the log is e.)

v

@ Less likely outcome gives more information.
@ Information is additive for independent events:
o If X and Y are independent,

h(x,y) = —logp(x,y)=—loglp(x)p(y)]
= —logp(x)—logp(y)
= h(x)+h(y)
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Entropy

Definition

Let X € X have PMF p(x). The entropy of X is

1
H(X) = Ep|0g<p(X)>
— Y p(x)logp(x

xeX

using convention that Olog0 =0, since lim,_,g+ xlogx = 0.

@ Entropy of X is the expected information gain from observing X.
o Entropy only depends on distribution p, so we can write H(p).
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Coding

Definition
A binary source code C is a mapping from X to finite 0/1 sequences. J

@ Consider r.v. X € X and binary source code C defined as:

| x| px) | C(x) |
1120
2 [ 1/4 [ 10
3| 1/8 | 110
4 1/8 | 111
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Expected Code Length

@ Consider r.v. X € X and binary source code C defined as:
’ X ‘ p(x) ‘ C(x) ‘ log —A~

p(x)
1[1/2]0 log,2 = 1
2| 1/4 |10 log,4 =2
3] 1/8 | 110 | log,8=3
41 1/8 | 111 | log,8=3
@ The entropy is H(X) =Elog[1/p(x)]:

1 1 1 1

@ The expected code length is
1 1 1

L(C)= 5 (1)+Z (2)+§(3)+é(3) = 1.75 bits.
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Prefix Codes

@ A code is a prefix code if no codeword is a prefix of another.

@ Prefix codes can be represented on trees:

@ Each leaf node is a codeword.

@ It's encoding represents the path from root to leaf.

From David MacKay's Information Theory, Inference, and Learning Algorithms, Section 5.1.
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Data Compression: What's the Best Prefix Code?

@ For X ~ p(x), we get best compression with codeword lengths

*(x) ~ —log p(x).

Optimal bit length of x is the Shannon Information of x.

@ Then the expected codeword length is

L* = El[-logp(X)]
= H(X)

Entropy H(X) gives a lower bound on coding performance.

@ Shannon's Theorem says we can achieve H(X) within 1 bit.
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Shannon's Source Coding Theorem

Theorem (Shannon’s Source Coding Theorem)

The expected length L of any binary prefix code for r.v. X is at least H(X):
L>H(X).
There exist codes with lengths £(x) = [—log, p(x)| achieving

H(X) < L< H(X)+1.

@ Notation [x]| = ceil(x) = (smallest integer >x)
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Shannon’s Source Coding Theorem: Summary

@ For any X ~ p(x), 3 code with L~ H(X).

@ Get arbitrarily close to H(X) by grouping multiple X's and coding all
at once.

@ If we know the distribution of X, we can code optimally.

o e.g. Use Huffman codes or arithmetic codes.

o What if we don’t know p(x), and we use g(x) instead?
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Coding with the Wrong Distribution: Core Calculation

o Allow fractional code lengths: £4(x) = —logq(x)
@ Then expected length for coding X ~ p(x) using {q(x) is
L = Ex pilq(X)

= —Zp )log q(x
p(x) 1
= 2Pl [M
= ) plx Iog3+zp Jlog 5

= KL(pllq)+H(p),

where KL(pl|q) is the Kullback-Leibler divergence between p and gq.
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Entropy, Cross-Entropy, and KL-Divergence

@ The Kullback-Leibler or “KL” Diverence is defined by

B p(X)
KL(pllg) = Ep|0g<q(X)>'

KL(p||q): #(extra bits) needed if we code with g(x) instead of p(x).
@ The cross entropy for p(x) and g(x) is defined as

H(p,q) = —Eplogq(X).

H(p,q): #(bits) needed to code X ~ p(x) using g(x).

@ Summary:
H(p.q) = H(p) +KL(pllq).
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Coding with the Wrong Distribution: Integer Lengths

Theorem

If we code X ~ p(x) using code lengths {(x) = [—log, q(x)], the expected
code length is bounded as

H(p)+ KL(pllq) <E L(X) < H(p)+ KL(pl|q) +1.

@ So with an implementable code (using integer codeword lengths), the
expected code length is within 1 bit of what could be achieved with
t(x) =—logz q(x).

@ Proof is a slight tweak on the “core calculation”.
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f:X — R is a convex function, and X € X is a random variable, then
Ef(X) > f(EX).

Moreover, if f is strictly convex, then equality implies that X =EX with
probability 1 (i.e. X is a constant).

e eg. f(x)=x?is convex. So EX? > (EX)?. Thus

VarX =EX?2— (EX)? > 0.
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Gibbs Inequality (KL(p||q) = 0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(pllq) >0,

with equality iff p(x) = q(x) for all x € X.

e KL divergence measures the “distance” between distributions.

@ Note:

e KL divergence not a metric.
o KL divergence is not symmetric.
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Gibbs Inequality: Proof

L(pllg) =

et

—log

LxeX
—logl=0.

| (xlp(x)>0

> qlx

(Jensen'’s)

2
o

)]

@ Since —log is strictly convex, we have strict equality iff g(x)/p(x) is a
constant, which implies g =p .
@ Essentially the same proof for PDFs.
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KL-Divergence for Model Estimation

@ Suppose D ={xq,..., Xn} is a sample from unknown p(x) on X.

@ Hypothesis space: P some set of distributions on X.
@ Idea: Find g € P that minimizes KL(p||q):

. . X
arqgerrﬂlmKL(p,q) = argengllnIEp [Iog<5§xg>}

@ Don't know p, so replace expectation by average over D:
J1 P(Xi)]
argmin< — ¥ log [
A { 219 | o
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Estimated KL-Divergence

@ The estimated KL-divergence:
1ji| Pﬂ&)]
n "% q0x)

1 1 —
= nzllogp(Xf)—nzllogq(X;).
1= 1=

@ The minimizer of this over g € P is also

n
arg maxZ log g(x;).
9a€P =1

@ This is exactly the objective for the MLE.
@ Minimizing KL between model and truth leads to MLE.
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