Lagrangian Duality and Convex Optimization

David Rosenberg

New York University

October 29, 2016

David Rosenberg (New York University)

Why Convex Optimization?

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- Today:
 - Main distinction is between convex and non-convex problems
 - Convex problems are the ones we know how to solve efficiently
- Many techniques that are well understood for convex problems are applied to non-convex problems
 - e.g. SGD is routinely applied to neural networks

Your Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See my "Extreme Abridgement of Boyd and Vandenberghe".

Notation from Boyd and Vandenberghe

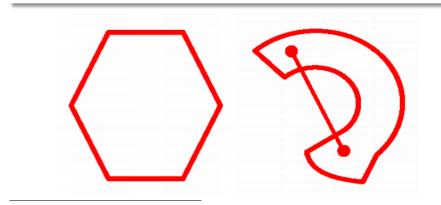
f: R^p → R^q to mean that f maps from some subset of R^p
namely dom f ⊂ R^p, where dom f is the domain of f

Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \leq \theta \leq 1$ we have

 $\theta x_1 + (1 - \theta) x_2 \in C.$

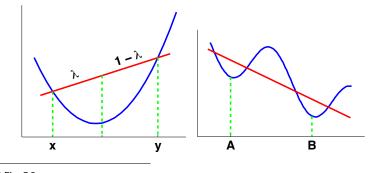


Convex and Concave Functions

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \text{dom } f$, and $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$$



Examples of Convex Functions on ${\bf R}$

Examples

- $x \mapsto ax + b$ is both convex and concave on Rfor all $a, b \in \mathbb{R}$.
- $x \mapsto |x|^p$ for $p \ge 1$ is convex on **R**
- $x \mapsto e^{ax}$ is convex on **R** for all $a \in \mathbf{R}$

Maximum of Convex Functions is Convex

Theorem

If $f_1, \ldots, f_m : \mathbf{R}^n \to \mathbf{R}$ are convex, then their pointwise maximum

$$f(x) = \max\{f_1(x), \ldots, f_m(x)\}$$

is also convex with domain dom $f = dom f_1 \cap \cdots \cap dom f_m$.

This result extends to sup over arbitrary [infinite] sets of functions. Proof.

(For m = 2.) Fix an $0 \le \theta \le 1$ and $x, y \in \text{dom } f$. Then

$$f(\theta x + (1-\theta)y) = \max\{f_1(\theta x + (1-\theta)y), f_2(\theta x + (1-\theta)y)\}$$

$$\leqslant \max\{\theta f_1(x) + (1-\theta) f_1(y), \theta f_2(x) + (1-\theta) f_2(y)\}$$

 $\leq \max\{\theta f_1(x), \theta f_2(x)\} + \max\{(1-\theta) f_1(y), (1-\theta) f_2(y)\}$ = $\theta f(x) + (1-\theta) f(y)$

Convex Functions and Optimization

Definition

A function f is strictly convex if the line segment connecting any two points on the graph of f lies strictly above the graph (excluding the endpoints).

Consequences for optimization:

- convex: if there is a local minimum, then it is a global minimum
- strictly convex: if there is a local minimum, then it is the unique global minumum

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p,$

where $x \in \mathbb{R}^n$ are the optimization variables and f_0 is the objective function.

Assume **domain** $\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$ is nonempty.

General Optimization Problem: More Terminology

- The set of points satisfying the constraints is called the feasible set.
- A point x in the feasible set is called a feasible point.
- If x is feasible and $f_i(x) = 0$,
 - then we say the inequality constraint $f_i(x) \leq 0$ is **active** at x.
- The optimal value p* of the problem is defined as

 $p^* = \inf \{ f_0(x) \mid f_i(x) \leq 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p \}.$

 x* is an optimal point (or a solution to the problem) if x* is feasible and f(x*) = p*.

The Lagrangian

Recall the general optimization problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leqslant 0, \ i = 1, \dots, m \\ & h_i(x) = 0, \ i = 1, \dots p, \end{array}$$

Definition

The Lagrangian for the general optimization problem is

$$L(x,\lambda,\nu) = f_0(x) + \sum_{I=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• $\lambda_i{}'s$ and $\nu{}'s$ are called Lagrange multipliers

• λ and ν also called the dual variables .

David Rosenberg (New York University)

The Lagrangian Encodes the Objective and Constraints

• Supremum over Lagrangian gives back objective and constraints:

$$\sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu) = \sup_{\lambda \succeq 0, \nu} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x), \right)$$
$$= \begin{cases} f_0(x) & f_i(x) \leq 0 \text{ and } h_i(x) = 0, \text{ all } i \\ \infty & \text{otherwise.} \end{cases}$$

• Equivalent primal form of optimization problem:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

The Primal and the Dual

• Original optimization problem in primal form:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0, \nu} \inf_{x} L(x, \lambda, \nu)$$

• We will show weak duality: $p^* \ge d^*$ for any optimization problem

Weak Max-Min Inequality

Theorem

For any $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, $W \subseteq \mathbb{R}^n$, or $Z \subseteq \mathbb{R}^m$, we have

$$\sup_{z\in Z} \inf_{w\in W} f(w,z) \leqslant \inf_{w\in W} \sup_{z\in Z} f(w,z).$$

Proof.

For any $w_0 \in W$ and $z_0 \in Z$, we clearly have

$$\inf_{w \in W} f(w, z_0) \leqslant f(w_0, z_0) \leqslant \sup_{z \in Z} f(w_0, z).$$

Since this is true for all w_0 and z_0 , we must also have

$$\sup_{z_0 \in Z} \inf_{w \in W} f(w, z_0) \leqslant \inf_{w_0 \in W} \sup_{z \in Z} f(w_0, z).$$

Weak Duality

• For any optimization problem (not just convex), weak max-min inequality implies weak duality:

$$p^* = \inf_{x} \sup_{\lambda \ge 0, \nu} \left[f_0(x) + \sum_{l=1}^m \lambda_i f_l(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$$

$$\geq \sup_{\lambda \ge 0, \nu} \inf_{x} \left[f_0(x) + \sum_{l=1}^m \lambda_i f_l(x) + \sum_{i=1}^p \nu_i h_i(x) \right] = d^*$$

- The difference $p^* d^*$ is called the **duality gap**.
- For *convex* problems, we often have strong duality: $p^* = d^*$.

The Lagrange Dual Function

• The Lagrangian dual problem:

$$d^* = \sup_{\substack{\lambda \succeq 0, \nu \\ \text{Lagrange dual function}}} \underbrace{\inf_{x} L(x, \lambda, \nu)}_{\text{Lagrange dual function}}$$

Definition

The Lagrange dual function (or just dual function) is

$$g(\lambda,\nu) = \inf_{x\in\mathcal{D}} L(x,\lambda,\nu) = \inf_{x\in\mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right).$$

• The dual function may take on the value $-\infty$ (e.g. $f_0(x) = x$).

The Lagrange Dual Problem

In terms of Lagrange dual function, we can write weak duality as

$$p^* \ge \sup_{\lambda \ge 0, \nu} g(\lambda, \nu) = d^*$$

 So for any (λ, ν) with λ ≥ 0, Lagrange dual function gives a lower bound on optimal solution:

$$g(\lambda, \nu) \leqslant p^*$$

The Lagrange Dual Problem

• The Lagrange dual problem is a search for best lower bound:

 $\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \succeq 0. \end{array}$

- (λ, ν) dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$.
- (λ*, ν*) are dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual problem.
- Lagrange dual problem often easier to solve (simpler constraints).
- *d*^{*} can be used as stopping criterion for primal optimization.
- Dual can reveal hidden structure in the solution.

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$
 $a_i^T x = b_i, i = 1, ... p$

where f_0, \ldots, f_m are convex functions. Note: Equality constraints are now linear. Why?

Strong Duality for Convex Problems

- For a convex optimization problems, we **usually** have strong duality, but not always.
 - For example:

$$\begin{array}{ll} \text{minimize} & e^{-x} \\ \text{subject to} & x^2/y \leqslant 0 \\ & y > 0 \end{array}$$

• The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui's EE 227A: Lecture 8 Notes, Feb 9, 2012

Slater's Constraint Qualifications for Strong Duality

- Sufficient conditions for strong duality in a convex problem.
- Roughly: the problem must be strictly feasible.
- Qualifications when problem domain $\mathcal{D} \subset \mathbf{R}^n$ is an open set:
 - $\exists x \text{ such that } Ax = b \text{ and } f_i(x) < 0 \text{ for } i = 1, \dots, m$
 - For any affine inequality constraints, $f_i(x) \leq 0$ is sufficient
- Otherwise, x must be in the "relative interior" of ${\mathcal D}$
 - See notes, or BV Section 5.2.3, p. 226.

Complementary Slackness

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have strong duality, we get an interesting relationship between
 - the optimal Lagrange multiplier λ_i and
 - the *i*th constraint at the optimum: $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

• Lagrange multiplier is zero unless the constraint is active at the optimum.

Complementary Slackness Proof

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and (λ^*, ν^*) be dual optimal. Then:

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \inf_{x} \left(f_{0}(x) + \sum_{I=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leqslant f_{0}(x^{*}) + \sum_{i=1}^{m} \underbrace{\lambda_{i}^{*} f_{i}(x^{*})}_{\leqslant 0} + \sum_{i=1}^{p} \underbrace{\nu_{i}^{*} h_{i}(x^{*})}_{=0}$$

$$\leqslant f_{0}(x^{*}).$$

Each term in sum $\sum_{i=1} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

This condition is known as complementary slackness.