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Introduction

Feature Extraction

Focus on effectively representing x ∈ X as a vector φ(x) ∈ Rd .
e.g. Bag of words:
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Introduction

Kernel Methods

Primary focus is on comparing two inputs w ,x ∈ X.

Definition
A kernel is a function that takes a pair of inputs w ,x ∈ X and returns a
real value. That is, k : X×X→ R.

Can interpret k(w ,x) as a similarity score, but this is not precise.
We will deal with symmetric kernels: k(w ,x) = k(x ,w).
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Kernel Examples

Comparing Documents
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Kernel Examples

Comparing Documents: Bag of Words
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Kernel Examples

Comparing Documents: Bag of Words
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Kernel Examples

Comparing Documents: Cosine Similarity

1 Normalize each feature vector to have ‖x‖2 = 1.
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Kernel Examples

Comparing Documents

1 Normalize each feature vector to have ‖x‖2 = 1.
2 Take inner product
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Kernel Examples

Comparing Documents: Cosine Similarity

1 Normalize each feature vector to have ‖x‖2 = 1.
2 Take inner product
3 Then define

k(VentureBeat,Twitter Tweet) = 0.85
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Kernel Examples

Cosine Similarity Kernel

Why the name? Recall

〈w ,x〉= ‖w‖‖x‖cosθ,

where θ is the angle between w ,x ∈ Rd .
So

k(w ,x) = cosθ=
〈

w

‖w‖
,
x

‖x‖

〉
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Kernel Examples

Linear Kernel

Input space X= Rd

k(w ,x) = wT x

When we “kernelize” an algorithm, we write it in terms of the linear
kernel.
Then we can swap it out a replace it with a more sophisticated kernel
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Kernel Examples

Quadratic Kernel in R2

Input space X= R2

Feature map:

φ : (x1,x2) 7→
(
x1,x2,x

2
1 ,x

2
2 ,
√
2x1x2

)
Gives us ability to represent conic section boundaries.
Define kernel as inner product in feature space:

k(w ,x) = 〈φ(w),φ(x)〉
= w1x1+w2x2+w2

1 x
2
1 +w2

2 x
2
2 +2w1w2x1x2

= w1x1+w2x2+(w1x1)
2+(w2x2)

2+2(w1x1)(w2x2)

= 〈w ,x〉+ 〈w ,x〉2

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
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Kernel Examples

Quadratic Kernel in Rd

Input space X= Rd

Feature map:

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

Number of terms = d +d(d +1)/2≈ d2/2.
Still have

k(w ,x) = 〈φ(w),φ(x)〉
= 〈x ,y〉+ 〈x ,y〉2

Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
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Kernel Examples

Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(w ,x) = (1+ 〈w ,x〉)M

Corresponds to a feature map with all terms up to degree M.
For any M, computing the kernel has same computational cost
Cost of explicit inner product computation grows rapidly in M.

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 14 / 31



Kernel Examples

Radial Basis Function (RBF) Kernel

Input space X= Rd

k(w ,x) = exp
(
−
‖w − x‖2

2σ2

)
,

where σ2 is known as the bandwidth parameter.
Does it act like a similarity score?
Why “radial”?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinte dimensional feature vector

Probably the most common nonlinear kernel.
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Kernel Machines

Feature Vectors from a Kernel

So what can we do with a kernel?
We can generate feature vectors:
Idea: Characterize input x by its similarity to r fixed prototypes in X.

Definition
A kernelized feature vector for an input x ∈ X with respect to a kernel k
and prototype points µ1, . . . ,µr ∈ X is given by

Φ(x) = [k(x ,µ1), . . . ,k(x ,µr )] ∈ Rr .
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Kernel Machines

Kernel Machines

Definition
A kernel machine is a linear model with kernelized feature vectors.

This corresponds to a prediction functions of the form

f (x) = αTΦ(x)

=

r∑
i=1

αik(x ,µi ),

for α ∈ Rr .

An Interpretation
For each µi , we get a function on X:

x 7→ k(x ,µi )

f (x) is a linear combination of these functions.
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Kernel Machines

Kernel Machine Basis Functions

Input space X= R

RBF kernel k(w ,x) = exp
(
−(w − x)2

)
.

Prototypes at {−6,−4,−3,0,2,4}.
Corresponding basis functions:
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Kernel Machines

Kernel Machine Prediction Functions

Basis functions

Predictions of the form

f (x) =
r∑

i=1

αik(x ,µi )
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Kernel Machines

RBF Network

An RBF network is a linear model with an RBF kernel.

First described in 1988 by Broomhead and Lowe (neural network
literature)

Characteristics:

Nonlinear
Smoothness depends on RBF kernel bandwidth
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Kernel Machines

How to Choose Prototypes

Uniform grid on space?

only feasible in low dimensions
where to focus the grid?

Cluster centers of training data?

Possible, but clustering is difficult in high dimensions

Use all (or a subset of) the training points
Most common approach for kernel methods
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Kernel Machines

All Training Points as Prototypes

Consider training inputs x1, . . . ,xn ∈ X

Then

f (x) =
n∑

i=1

αik(x ,xi ).

Requires all training examples for prediction?
Not quite: Only need xi for αi 6= 0.
Want αi ’s to be sparse.

Train with `1 regularization: `1-regularized vector machine
[Will show SVM also gives sparse functions of this form.]

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 22 / 31



Kernel Machines

`1-Regularized Vector Machine

RBF Kernel with bandwidth σ= 0.3.
Linear hypothesis space: F = {f (x) =

∑n
i=1αik(x ,xi ) | α ∈ Rn}.

Logistic loss function: `(y , ŷ) = log
(
1+ e−yŷ

)
`1-regularization, n = 200 training points

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

logregL1, nerr=169

KPM Figure 14.4b
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Kernel Machines

`2-Regularized Vector Machine

RBF Kernel with bandwidth σ= 0.3.
Linear hypothesis space: F = {f (x) =

∑n
i=1αik(x ,xi ) | α ∈ Rn}.

Logistic loss function: `(y , ŷ) = log
(
1+ e−yŷ

)
`2-regularization, n = 200 training points

−2 −1 0 1 2 3
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logregL2, nerr=174

KPM Figure 14.4a
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Example: Vector Machine for Ridge Regression

`2-Regularized Vector Machine for Regression

Kernel function k : X×X→ R is symmetric (but nothing else).
Hypothesis space (linear functions on kernelized feature vector)

F =

{
fα(x) =

n∑
i=1

αik(x ,xi ) | α ∈ Rn

}
.

Objective function (square loss with `2 regularization):

J(α) =
1
n

n∑
i=1

(yi − fα(xi ))
2+λαTα,

where

fα(xi ) =
n∑

j=1

αjk(xi ,xj).

Note: All dependence on x’s is via the kernel function.
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Example: Vector Machine for Ridge Regression

The Kernel Matrix

Note that

f (xi ) =
n∑

j=1

αjk(xi ,xj)

only depends on the kernel function on all pairs of n training points.

Definition
The kernel matrix for a kernel k on a set {x1, . . . ,xn} as

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)

 ∈ Rn×n.
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Example: Vector Machine for Ridge Regression

Vectorizing the Vector Machine

Claim: Kα gives the prediction vector (fα(x1), . . . , fα(xn))
T :

Kα =

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


α1

...
αn


=

α1k(x1,x1)+ · · ·+αnk(x1,xn)
...

α1k(xn,x1)+ · · ·+αnk(x1,xn)


=

fα(x1)
...

fα(xn)

 .
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Example: Vector Machine for Ridge Regression

Vectorizing the Vector Machine

The ith residual is yi − fα(xi ). We can vectorize as:

y −Kα =

y1− fα(x1)
...

yn− fα(xn)


Sum of square residuals is

(y −Kα)T (y −Kα)

Objective function:

J(α) =
1
n
‖y −Kα‖2+λαTα
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Example: Vector Machine for Ridge Regression

Vectorizing the Vector Machine

Consider X= Rd and k(w ,x) = wT x (linear kernel)
Let X ∈ Rn×d be the design matrix, which has each input vector as a
row:

X =

−x1−
...

−xn−

 .

Then the kernel matrix is

K = XXT =

−x1−
...

−xn−


 | · · · |

x1 · · · xn
| · · · |


And the objective function is

J(α) =
1
n
‖y −XXTα‖2+λαTα
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Features vs Kernels

Features vs Kernels

Theorem
Suppose a kernel can be written as an inner product:

k(w ,x) = 〈φ(w),φ(x)〉 .

Then the kernel machine is a linear classifier with feature map φ(x).

Mercer’s Theorem characterizes kernels with these properties.
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Features vs Kernels

Features vs Kernels

Proof.
For prototype points x1, . . . ,xr ,

f (x) =

r∑
i=1

αik(x ,xi )

=

r∑
i=1

αi 〈φ(x),φ(xi )〉

=

〈
r∑

i=1

αiφ(xi ),φ(x)

〉
= wTφ(x)

where w =
∑r

i=1αiφ(xi ).
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