
Machine Learning and Computational Statistics, Spring 2016

Homework 2: Lasso

Due: Tuesday, February 16, 2016, at 6pm (Submit via NYU Classes)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single PDF file. You may include your code inline or submit it as a
separate file. You may either scan hand-written work or, preferably, write your answers using
software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython).

1 Preliminaries

1.1 Dataset construction

Start by creating a design matrix for regression with m = 150 examples, each of dimension d = 75.
We will choose a true weight vector θ that has only a few non-zero components:

1. Let X ∈ Rm×d be the “design matrix,” where the i’th row of X is xi ∈ Rd. Construct a
random design matrix X using numpy.random.rand() function.

2. Construct a true weight vector θ ∈ Rd×1 as follows: Set the first 10 components of θ to 10
or -10 arbitrarily, and all the other components to zero.

3. Let y = (y1, . . . , ym)
T ∈ Rm×1 be the response. Construct the vector y = Xθ + ε, where ε is

an m× 1 random noise vector generated using numpy.random.randn() with mean 0 and
standard deviation 0.1.

4. Split the dataset by taking the first 80 points for training, the next 20 points for validation,
and the last 50 points for testing.

Note that we are not adding an extra feature for the bias in this problem. By construction, the
true model does not have a bias term.

1.2 Experiments with Ridge Regression

By construction, we know that our dataset admits a sparse solution. Here, we want to evaluate the
performance of ridge regression (i.e. `2-regularized linear regression) on this dataset.

1. Run ridge regression on this dataset. Choose the λ that minimizes the square loss on the vali-
dation set. For the chosen λ, examine the model coefficients. Report on how many components
with true value 0 have been estimated to be non-zero, and vice-versa (don’t worry if they are
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all nonzero). Now choose a small threshold (say 10−3 or smaller), count anything with magni-
tude smaller than the threshold as zero, and repeat the report. (For running ridge regression,
you may either use your code from HW1, or you may use scipy.optimize.minimize (see
the demo code provided for guidance). For debugging purposes, you are welcome, even en-
couraged, to compare your results to what you get from sklearn.linear model.Ridge.)

2 Coordinate Descent for Lasso (a.k.a. The Shooting algo-
rithm)

The Lasso optimization problem can be formulated as

ŵ = arg min
w∈Rd

m∑
i=1

(hw(xi)− yi)2 + λ‖w‖1,

where hw(x) = wTx, and ‖w‖1 =
∑d
i=1 |wi|. Since the `1-regularization term in the objective

function is non-differentiable, it’s not clear how gradient descent or SGD could be used to solve this
optimization problem.

Another approach to solving optimization problems is coordinate descent, in which at each step
we optimize over one component of the unknown parameter vector, fixing all other components.
The descent path so obtained is a sequence of steps each of which is parallel to a coordinate axis
in Rd, hence the name. It turns out that for the Lasso optimization problem, we can find a closed
form solution for optimization over a single component fixing all other components. This gives us
the following algorithm:

(Source: Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.)

The “soft thresholding” function is defined as

soft (a, δ) = sign(a) (|a| − δ)+ .

NOTE: Algorithm 13.1 does not account for the case that aj = cj = 0, which occurs when the
jth column of X is identically 0. One can either eliminate the column (as it cannot possibly help
the solution), or you can set wj = 0 in that case, as that is, in fact, the coordinate minimizer in
that case.
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Note also that Murphy is suggesting to initialize the optimization with the ridge regession
solution, though this is not necessary.

The solution should have a sparsity pattern that is similar to the ground truth. Estimators that
preserve the sparsity pattern (with enough training data) are said to be “sparsistent1” (sparse

+ consistent). Formally, an estimator β̂ of parameter β is said to be consistent if the estimator β̂
converges to the true value β in probability as our sample size goes to infinity. Analogously, if we
define the support of a vector β as the indices with non-zero components, i.e. Supp(β) = {j | βj 6=
0}, then an estimator β̂ is said to be sparsistent if as the number of samples becomes large, the

support of β̂ converges to the support of β, or lim
m→∞

P [Supp(β̂m) = Supp(β)] = 1.

There are a few tricks that can make selecting the hyperparameter λ easier and faster. First, you
can show that for any λ > 2‖XT (y− ȳ)‖∞, the estimated weight vector ŵ is entirely zero, where ȳ
is the mean of values in the vector y, and ‖ · ‖∞ is the infinity norm (or supremum norm), which is
the maximum absolute value of any component of the vector. Thus we need to search for an optimal
λ in [0, λmax], where λmax = 2‖XT (y− ȳ)‖∞. (Note: This expression for λmax assumes we have an
unregularized bias term in our model. That is, our decision functions are hw,b(x) = wTx + b. For
the experiments, you can exclude the bias term, in which case λmax = 2‖XT y‖∞.)

Second, we can make use of the fact that when λ and λ′ are close, so are the corresponding
solutions ŵ(λ) and ŵ(λ′). Start by finding ŵ(λmax) and initialize the optimization at w = 0. Next,
λ is reduced (e.g. by a constant factor), and the optimization problem is solved using the previous
optimal point as the starting point. This is called warm starting the optimization. The entire
technique of computing a set of solutions for a chain of nearby λ’s is called a continuation or
homotopy method. In the context of finding a good regularization hyperparameter, it may be
referred to as a regularization path approach. (Lots of names for this!)

2.1 Experiments with the Shooting Algorithm

1. Write a function that computes the Lasso solution for a given λ using the shooting algorithm
described above. This function should take a starting point for the optimization as a param-
eter. Run it on the dataset constructed in (1.1), and select the λ that minimizes the square
error on the validation set. Report the optimal value of λ found, and the corresponding test
error. Plot the validation error vs λ. [Don’t use the homotopy method in this part, as we
want to measure the speed improvement of homotopy methods in part 3. Also, no need to
vectorize the calculations until part 4, where again we’ll compare the speedup. In any case,
having two different implementations of the same thing is a good way to check your work.]

2. Analyze the sparsity of your solution, reporting how many components with true value zero
have been estimated to be non-zero, and vice-versa.

3. Implement the homotopy method described above. Compare the runtime for computing the
full regularization path (for the same set of λ’s you tried in the first question above) using
the homotopy method compared to the basic shooting algorithm.

4. The algorithm as described above is not ready for a large dataset (at least if it has been imple-
mented in basic Python) because of the implied loop over the dataset (i.e. where we sum over
the training set). By using matrix and vector operations, we can eliminate the loops. This is

1Li, Yen-Huan, et al. “Sparsistency of l1-Regularized M -Estimators.”
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called “vectorization” and can lead to dramatic speedup in languages such as Python, Matlab,
and R. Derive matrix expressions for computing aj and cj . (Hint: A matlab version of this
vectorized method can be found here: http://pmtk3.googlecode.com/svn-history/
r1393/trunk/toolbox/Variable_selection/lassoExtra/LassoShooting.m). Im-
plement the matrix expressions and measure the speedup to compute the regularization path.

2.2 Deriving the Coordinate Minimizer for Lasso

This problem is to derive the expressions for the coordinate minimizers used in the Shooting al-
gorithm. This is often presented using subgradients (e.g. http://davidrosenberg.github.
io/ml2015/docs/2.Lab.subgradient-descent.pdf#page=15), but here we will walk you
through a bare hands approach (which is essentially equivalent).

In each step of the shooting algorithm, we would like to find the wj minimizing

f(wj) =

n∑
i=1

(
wTxi − yi

)2
+ λ |w|1

=

n∑
i=1

wjxij +
∑
k 6=j

wkxik − yi

2

+ λ |wj |+ λ
∑
k 6=j

|wk| ,

where we’ve written xij for the jth entry of the vector xi. This function is strictly convex in wj ,
and thus it has a unique minimum. Furthermore, the only thing keeping f from being differentiable
is the term with |wj |. So f is differentiable everywhere except wj = 0. We’ll break this problem
into 3 cases: wj > 0, wj < 0, and wj = 0. In the first two cases, we can simply differentiate f
w.r.t. wj to get optimality conditions. For the last case, we’ll use the following more bare-hands
characterization: Since f is convex, 0 is a minimizer of f iff

lim
ε↓0

f(ε)− f(0)

ε
≥ 0 and lim

ε↓0

f(−ε)− f(0)

ε
≥ 0.

This is a special case of the optimality conditions described in this slide http://davidrosenberg.
github.io/ml2015/docs/5.Lab.misc.pdf#page=10, where now the “direction” v is simply
taken to be the scalars 1 and −1, respectively.

1. First let’s get a trivial case out of the way. If xij = 0 for i = 1, . . . , n, what is the coordinate
minimizer wj? In the remaining questions below, you may assume that

∑n
i=1 x

2
ij > 0.

2. Give an expression for the derivative f(wj) for wj 6= 0. It will be convenient to write your
expression in terms of the following definitions:

sign(wj) :=


1 wj > 0

0 wj = 0

−1 wj < 0

aj := 2

n∑
i=1

x2ij

cj := 2

n∑
i=1

xij

yi −∑
k 6=j

wkxik

 .
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3. If wj > 0 and minimizes f , then show that wj = − 1
aj

(λ− cj). Similarly, if wj < 0 and

minimizes f , show that wj = 1
aj

(λ+ cj). Give conditions on cj that imply the minimizer

wj > 0 and wj < 0, respectively.

4. Derive expressions for the two one-sided derivatives at f(0), and show that cj ∈ [−λ, λ] implies
that wj = 0 is a minimizer.

5. Conclude that the minimizer is given by

wj =


1
aj

(cj − λ) cj > λ

0 cj ∈ [−λ, λ]
1
aj

(cj + λ) cj < −λ

and show that this is equivalent to the expression given in 2.

3 Lasso Properties

3.1 Deriving λmax

In this problem we will derive an expression for λmax. For the first three parts, use the Lasso
objective function excluding the bias term i.e, L(w) = ‖Xw − y‖22 + λ ‖w‖1. Show that for any
λ ≥ 2‖XT y‖∞, the estimated weight vector ŵ is entirely zero, where ‖ · ‖∞ is the infinity norm (or
supremum norm), which is the maximum absolute value of any component of the vector.

1. The one-sided directional derivative of f(x) at x in the direction v is defined as:

f ′(x; v) = lim
h↓0

f(x+ hv)− f(x)

h

Compute L′(0; v). That is, compute the one-sided directional derivative of L(w) at w = 0 in
the direction v. [Hint: the result should be in terms of X, y, λ, and v.]

2. Since the Lasso objective is convex, for w∗ to be a minimizer of L(w) we must have that
the directional derivative L′(w∗; v) ≥ 0 for all v. Starting from the condition L′(0; v) ≥ 0,
rearrange terms to get a lower bounds on λ. [Hint: this should be in terms of X, y, and v.]

3. Since our lower bounds on λ hold for all v, we want to compute the maximum lower bound.
Compute the maximum lower bound of λ by maximizing the expression over v. Show that
this expression is equivalent to λmax = 2‖XT y‖∞.

4. [Optional] Show that for L(w) = ‖Xw + b− y‖22 + λ ‖w‖1, λmax = 2‖XT (y − ȳ)‖∞where ȳ is
the mean of values in the vector y.

Reference: http://davidrosenberg.github.io/ml2015/docs/5.Lab.misc.pdf#page=
10.
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3.2 [Optional] Feature Correlation

In this problem, we will examine and compare the behavior of the Lasso and ridge regression in
the case of an exactly repeated feature. That is, consider the design matrix X ∈ Rm×d, where
X·i = X·j for some i and j, where X·i is the ith column of X. We will see that ridge regression
divides the weight equally among identical features, while Lasso divides the weight arbitrarily. In an
optional part to this problem, we will consider what changes when X·i and X·j are highly correlated
(e.g. exactly the same except for some small random noise) rather than exactly the same.

1. [Optional] Derive the relation between θ̂i and θ̂j , the ith and the jth components of the optimal
weight vector obtained by solving the Lasso optimization problem.
[Hint: Assume that in the optimal solution, θ̂i = a and θ̂j = b. First show that a and b must
have the same sign. Then, using this result, rewrite the optimization problem to derive a
relation between a and b.]

2. [Optional] Derive the relation between θ̂i and θ̂j , the ith and the jth components of the optimal
weight vector obtained by solving the ridge regression optimization problem.

3. [Optional] What do you think would happen with Lasso and ridge when X·i and X·j are
highly correlated, but not exactly the same. You may investigate this experimentally or
geometrically.

4 The Ellipsoids in the `1/`2 regularization picture

Recall the famous picture purporting to explain why `1 regularization leads to sparsity, while `2
regularization does not. Here’s the instance from Hastie et al’s The Elements of Statistical Learning:

(While Hastie et al. use β for the parameters, we’ll continue to use w.)
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In this problem we’ll show that the level sets of the empirical risk are indeed ellipsoids centered
at the empirical risk minimizer ŵ.

Consider linear prediction functions of the form x 7→ wTx. Then the empirical risk for any w,
the empirical risk for f(x) = wTx under the square loss is

R̂n(w) =
1

n

n∑
i=1

(
wTxi − yi

)2
=

1

n
(Xw − y)

T
(Xw − y) .

1. Let ŵ =
(
XTX

)−1
XT y. Show that ŵ has empirical risk given by

R̂n(ŵ) =
1

n

(
−yTXŵ + yT y

)
2. Show that for any w we have

R̂n(w) =
1

n
(w − ŵ)

T
XTX (w − ŵ) + R̂n(ŵ).

Note that the RHS (i.e. “right hand side”) has one term that’s quadratic in w and one term
that’s independent of w. In particular, the RHS does not have any term that’s linear in w. On
the LHS (i.e. “left hand side”), we have R̂n(w) = 1

n (Xw − y)
T

(Xw − y). After expanding
the out, you’ll have terms that are quadratic, linear, and constant in w. Completing the
square is the tool for rearranging an expression to get rid of the linear terms. The following
“completing the square” identity is easy to verify just by multiplying out the expressions on
the RHS:

xTMx− 2bTx =
(
x−M−1b

)T
M(x−M−1b)− bTM−1b

3. Using the expression derived for R̂n(w) in 2, give a very short proof that ŵ =
(
XTX

)−1
XT y

is the empirical risk minimizer. That is:

ŵ = arg min
w

R̂n(w).

Hint: Note that XTX is positive semidefinite and, by definition, a symmetric matrix M is
positive semidefinite iff for all x ∈ Rd, xTMx ≥ 0.

4. Give an expression for the set of w for which the empirical risk exceeds the minimum empirical
risk R̂n(ŵ) by an amount c > 0. This set is an ellipse – what is its center?

5 [Optional] Projected SGD via Variable Splitting

In this question, we consider another general technique that can be used on the Lasso problem. We
first use the variable splitting method to transform the Lasso problem to a smooth problem with
linear inequality constraints, and then we can apply a variant of SGD.
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Representing the unknown vector θ as a difference of two non-negative vectors θ+ and θ−, the

`1-norm of θ is given by

d∑
i=1

θ+i +

d∑
i=1

θ−i . Thus, the optimization problem can be written as

(θ̂+, θ̂−) = arg min
θ+,θ−∈Rd

m∑
i=1

(hθ+,θ−(xi)− yi)2 + λ

d∑
i=1

θ+i + λ

d∑
i=1

θ−i

such that θ+ ≥ 0 and θ− ≥ 0,

where hθ+,θ−(x) = (θ+− θ−)Tx. The original parameter θ can then be estimated as θ̂ = (θ̂+− θ̂−).
This is a convex optimization problem with a differentiable objective and linear inequality

constraints. We can approach this problem using projected stochastic gradient descent, as discussed
in lecture. Here, after taking our stochastic gradient step, we project the result back into the feasible
set by setting any negative components of θ+ and θ− to zero.

1. [Optional] Implement projected SGD to solve the above optimization problem for the same
λ’s as used with the shooting algorithm. Since the two optimization algorithms should find
essentially the same solutions, you can check the algorithms against each other. Report the
differences in validation loss for each λ between the two optimization methods. (You can
make a table or plot the differences.)

2. [Optional] Choose the λ that gives the best performance on the validation set. Describe the
solution ŵ in term of its sparsity. How does the sparsity compare to the solution from the
shooting algorithm?
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