Hard-margin SVM

Levent Sagun

New York University

February 11, 2016
Problem setup

Given a set of linearly separable training data, how can one find a good separator? What do we expect from a good separator?

- ... that it actually separates the training points
- ... that it generalizes well

Let \(\{x^i, y^i\}_{i=1}^N \in \mathcal{D} \) be the training data, where \(x^i \in \mathbb{R}^n \) and \(y^i \) is either +1 or -1. What does it mean that the data is linearly separable?

- ... that there is a hyperplane that separates the two clusters
- ... that there is possibly a lot of such hyperplanes

How to choose the best one?
Example

Linearly separable data
Linearly separable data
Example

Linearly separable data
Hyperplane parametrization

Simplest case of real variables, $y = mx + b$ draws a line with slope m that intersects y-axis at the point b:

- Rewrite the above equation: $(m, -1) \cdot (x, y) + b = 0$
- A better notation can be: $(w_1, w_2) \cdot (x_1, x_2) + b = 0$
- $-w_2/w_1 = m$ captures the connection between the two
Hyperplane parametrization

Simplest case of real variables, \(y = mx + b \) draws a line with slope \(m \) that intersects \(y \)-axis at the point \(b \):

- Rewrite the above equation: \((m, -1) \cdot (x, y) + b = 0\)
- A better notation can be: \((w_1, w_2) \cdot (x_1, x_2) + b = 0\)
- \(-w_2/w_1 = m\) captures the connection between the two

Generalize this to higher dimensions, for \(w, x \in \mathbb{R}^n \) and \(b \in \mathbb{R} \):

- \(\ell(x) = w \cdot x + b \) where \(L = \{x : \ell(x) = 0\} \) describes a hyperplane.
- \(w \) is orthogonal to \(L \) (check \(w \cdot (v - v') = 0 \) for \(v, v' \in L \))
- What should \(\ell \) assign to the two clusters?

\[
\ell(x) \text{ is } \begin{cases}
> 0 \text{ if } x \in \text{Blue: +1 class} \\
< 0 \text{ if } x \in \text{Red: -1 class}
\end{cases}
\]

- **Note:** \(y^i \ell(x^i) > 0 \) if \(\ell(x) = 0 \) separates the data perfectly!
Distance of a point to a line

For a point $x \in \mathbb{R}^n$, how far is x to a given hyperplane L?

- Denote the distance of a point x to L by $d(x, L)$.
- Pick a point on the L, say x', then $d(x, L)$ is the projection of $(x - x')$ onto the normal vector w of L.

Crash course on projections:

- Linear transformations, P, such that $P^2 = P$.
- Unique decomposition into image and kernel of P.
- Orthogonal projections: $P = P^T$.
- Vector projection: $P_w(v) = \frac{v \cdot w}{||w||^2} w$
Hard-margin SVM

Given two linearly separable clusters, C_1 and C_2, and a hyperplane $L = \{x : \ell(x) = w \cdot x + b = 0\}$ with $||w|| = 1$, suppose $x^{1,L} \in C_1$ and $x^{2,L} \in C_2$ are the closest points to L.

- For any i, $y^i \ell(x^i) \geq \min\{d(x^{1,L}, L), d(x^{2,L}, L)\} > 0$
- **GOAL**: Maximize the margin around L!
- Since data is linearly separable, the maximizer will be on the set where $d(x^{1,L}, L) = d(x^{2,L}, L)$, let’s call this M. (note that M depends on data points and the line)
Hard-margin SVM

Given two linearly separable clusters, C_1 and C_2, and a hyperplane $L = \{x : \ell(x) = w \cdot x + b = 0\}$ with $||w|| = 1$, suppose $x^{1,L} \in C_1$ and $x^{2,L} \in C_2$ are the closest points to L.

- For any i, $y^i\ell(x^i) \geq \min\{d(x^{1,L}, L), d(x^{2,L}, L)\} > 0$
- **GOAL:** Maximize the margin around L!
- Since data is linearly separable, the maximizer will be on the set where $d(x^{1,L}, L) = d(x^{2,L}, L)$, let’s call this M. (note that M depends on data points and the line)

Procedure:

$$\max\{M : b \in \mathbb{R}, w \in \mathbb{R}^n, ||w|| = 1\}$$ (1)
subject to $y^i(w \cdot x^i + b) \geq M$ (2)
Equivalent formulation

For any pair of \((w, b)\) we can calculate \(M\) and then considering the new pair \((w', b') = (\frac{w}{M}, \frac{b}{M})\) we get \(y^i(\frac{w}{M} \cdot x^i + \frac{b}{M}) \geq 1\). Therefore, maximizing \(M\) can be rephrased as minimizing \(\|w'\|\).

Equivalent procedure:

\[
\min\{\|w'\| : b' \in \mathbb{R}, w' \in \mathbb{R}^n\} \tag{3}
\]

subject to \(y^i(w' \cdot x^i + b') \geq 1 \tag{4}\)

- Note that: \(\|w'\| = \|\frac{w}{M}\| = \frac{\|w\|}{M} = \frac{1}{M}\)
- This is a convex optimization problem: quadratic criterion, linear inequality constraints.
- But, what if the clusters overlap?
Overlapping clusters

For all data points let $t^i > 0$ be the slack variables that represent how wrong the prediction is. We will modify the first formulation first:

Recall the procedure:

$$\max \{ M : b \in \mathbb{R}, w \in \mathbb{R}^n, ||w|| = 1 \}$$

subject to

$$y^i(w \cdot x^i + b) \geq M$$

Let's modify the second equation to allow each point to have a little more room:

Modified procedure:

$$\max \{ M : b \in \mathbb{R}, w \in \mathbb{R}^n, ||w|| = 1 \}$$

subject to

$$y^i(w \cdot x^i + b) \geq M(1 - t^i)$$
Overlapping clusters

Now let’s find the equivalent version of the modified problem:

Recall the equivalent procedure:

\[
\min \{ \|w'\| : b' \in \mathbb{R}, w' \in \mathbb{R}^n \} \tag{9}
\]

subject to \(y^i (w' \cdot x^i + b') \geq 1 \) \(\tag{10} \)

We give a little room for the points to sneak in the margin:

Modified equivalent procedure:

\[
\min \{ \|w'\| : b' \in \mathbb{R}, w' \in \mathbb{R}^n \} \tag{11}
\]

subject to \(y^i (w' \cdot x^i + b') \geq 1 - t^i \) \(\tag{12} \)

How much should we allow points to sneak in? Let’s put a bound on this: \(\sum t^i < C \)

Final procedure:

\[
\min \{ \frac{1}{2}\|w\|^2 + c \sum t^i : w \in \mathbb{R}^n, t^i > 0 \} \tag{13}
\]

subject to \(y^i (w \cdot x^i + b) \geq 1 - t^i \) \(\tag{14} \)
Figure from Hastie’s book. Here $\beta = w$ and $\beta_0 = b$.
Exercises

• **Linear regression;** Minimizing sum of squares of errors in $y = X\beta + \epsilon$: Find β such that $\|y - X\beta\| = f(\beta)$ is minimized.
• What’s the orthogonal projection of y onto the columns of X?
• What’s the connection of the two?
• When is X^TX not invertible?
• In the overlapping case, what would happen if you modified the constraint by $y^i(w \cdot x^i - b) \geq M - t^i$