Test Two Review

David Rosenberg

New York University

December 26, 2016
Kernels

- The kernel trick
Trees

- doesn't depend on actual values of features – just ordering within each feature
Bagging

T/F: In bagging, as we increase the number of bootstrap samples, we expect that we will eventually overfit.

- False.

With bagging, how can we get an estimate of test performance while still using all our data for training?

- “out-of-bag” error
Random Forest

- T/F: Random forest is just bagging with trees.
 - False

- T/F: Generating too many trees in a random forest will probably lead to overfitting.
 - False
T/F: We can use regression trees as the base classifier for AdaBoost.

False. AdaBoost is for hard classifiers.

T/F: We can use SVM as a base classifier for AdaBoost.

True, if you map the output to \([-1, 1]\) with a modified sign function.

T/F: We can view AdaBoost a method for minimizing the exponential loss using forward stagewise additive modeling.

True
Gradient Boosting

Know how to do gradient boosting with a new loss function and a black box regression algorithm.
Multiclass Classification

- Understand the key pieces
 - class sensitive loss function $\Delta(y, y')$
 - feature map: $\Psi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^d$
 - linear score function $(x, y) \mapsto \langle w, \Psi(x, y) \rangle$, parameterized by $w \in \mathbb{R}^d$
 - final prediction function $x \mapsto \arg \max_{y \in \mathcal{Y}} \langle w, \Psi(x, y) \rangle$
 - loss functions:
 - multiclass hinge / SVM loss
 - multinomial logistic regression loss
go through examples in slides (Poisson regression, Gaussian regression, binomial, multinomial)

note that you can use these same losses for gradient boosting
Conditional Exponential Distribution

- Input: \(x \) gives location and time
- Output: \(y \) gives waiting time for taxi pickup
- Exponential distributions are a natural candidate:

\[
\text{ExpDists} = \left\{ p_{\lambda}(y) = \lambda e^{-\lambda y} 1(y \in [0, \infty)) \mid \lambda \in (0, \infty) \right\}.
\]

- For input \(x \), we want to give back \(\lambda \), the exponential distribution parameter.
- Let’s make a generalized linear model.
- So we’ll predict \(x \mapsto f(w^T x) \) for some \(x \).
- What can we use for \(f \)?
Taking $w^T x \mapsto \exp(w^T x)$ does the trick. Maps into $(0, \infty)$.

The likelihood for observation $y \geq 0$ for

$$p_\lambda(y) = \lambda e^{-\lambda y}$$

For input x, predicted parameter is $\lambda = \exp(w^T x)$.

Likelihood of $y \mid x$ is then

$$p_w(y \mid x) = \exp(w^T x) e^{-\exp(w^T x) y}$$
Conditional Exponential Distribution

- Log-likelihood of $y \mid x$ is then
 \[p_w(y \mid x) = \exp(w^T x) e^{-\exp(w^T x)y} \]
 \[\log p_w(y \mid x) = w^T x - y \exp(w^T x) \]

- Log-likelihood of $(x_1, y_1), \ldots, (x_n, y_n)$ is
 \[\sum_{i=1}^{n} \left[w^T x_i - y_i \exp(w^T x_i) \right] \]

- MLE is then
 \[\hat{w}_{\text{MLE}} = \arg \max_{w \in \mathbb{R}^d} \sum_{i=1}^{n} \left[w^T x_i - y_i \exp(w^T x_i) \right] \]
Conditional Exponential Distribution with GBM?

- For linear version, we take parameter to be $f(w^T x)$.

\[
\log p_w(y|x) = w^T x - y \exp(w^T x)
\]

- Replace $w^T x$ by a general function $g(x)$ that we will learn with GBM.

- Log-likelihood objective function is

\[
J(g) = \sum_{i=1}^{n} [g(x_i) - y_i \exp(g(x_i))].
\]

(we want to maximize it)

- Differentiate w.r.t. $g(x_i)$... etc...