Neural Networks

David Rosenberg

New York University

December 25, 2016
Objectives

- What are neural networks?
- How do they fit into our toolbox?
- When should we consider using them?
Linear Prediction Functions

- Linear prediction functions: SVM, ridge regression, Lasso
- Generate the feature vector $\phi(x)$ by hand.
- Learn weight vector w from data.

$$\text{score} = w^T \phi(x)$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.
Add an extra layer with a nonlinear transformation:

\[h_i = \sigma(v_i^T \phi(x)) , \]

where \(\sigma \) is a nonlinear activation function. (We’ll come back to this.)

We’ve introduced hidden nodes \(h_1 \) and \(h_2 \).
Score is just

\[
\text{score} = w_1 h_1 + w_2 h_2
\]

\[
= w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x))
\]

This is the basic recipe.

- We can add more hidden nodes.
- We can add more hidden layers.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
Activation Functions

- The **nonlinearity** of the activation function is a key ingredient.
- The **logistic sigmoid** function is one of the more commonly used:

\[\sigma(x) = \frac{1}{1 + e^{-x}}. \]
Activation Functions

- More recently, the **rectified linear** function has been very popular:
 \[\sigma(x) = \max(0, x). \]

- "**RELU**" is much faster to calculate, and to calculate its derivatives.
Approximation Ability: \(f(x) = x^2 \)

- 3 hidden units; logistic activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's *Pattern Recognition and Machine Learning*, Fig 5.3
Approximation Ability: $f(x) = \sin(x)$

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's *Pattern Recognition and Machine Learning*, Fig 5.3
Approximation Ability: $f(x) = |x|$

- 3 hidden units; logistic activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's *Pattern Recognition and Machine Learning*, Fig 5.3
Approximation Ability: $f(x) = 1(x > 0)$

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's *Pattern Recognition and Machine Learning*, Fig 5.3
Neural Network: Hidden Nodes as Learned Features

Can interpret h_1 and h_2 as nonlinear features learned from data.
Facial Recognition: Learned Features

From Andrew Ng’s CS229 Deep Learning slides

David Rosenberg (New York University)
Neural Network: The Hypothesis Space

- What hyperparameters describe a neural network?
 - Number of layers
 - Number of nodes in each hidden layer
 - Activation function (many to choose from)

- Example neural network hypothesis space:
 \[\mathcal{F} = \{ f : \mathbb{R}^d \rightarrow \mathbb{R} \mid f \text{ is a NN with 2 hidden layers, 500 nodes in each} \} \]

- Functions in \(\mathcal{F} \) parameterized by the weights between nodes.
Neural networks give a **new hypothesis space**.

But we can use all the **same loss functions** we’ve used before.

Optimization method of choice: **mini-batch gradient descent**.

- In practice, lots of little tweaks; see e.g. AdaGrad and Adam
Neural Network: Objective Function

- In our simple network, the output score is given by
 \[f(x) = w_1 \sigma(v_1^T \phi(x)) + w_2 \sigma(v_2^T \phi(x)) \]

- Objective with square loss is then
 \[J(w, v) = \sum_{i=1}^{n} (y_i - f_{w, v}(x_i))^2 \]

- Note: \(J(w, v) \) is not convex.
 - makes optimization much more difficult
 - accounts for many of the “tricks of the trade”
Learning with Back-Propagation

- Back-propagation is an **algorithm** for computing the gradient.
- Mathematically, it’s not necessary.
- With lots of chain rule, you can work out the gradient by hand.
- Back-propagation is
 - a clean way to organize the computation of the gradient
 - an efficient way to compute the gradient

- Nice introduction to this perspective:
 - Stanford CS221 Lecture 3, Slides 63-96
 - http://web.stanford.edu/class/cs221/lectures/learning2.pdf
Neural networks are very expressive.
Correspond to big hypothesis spaces.
Many approaches are used for regularization.
Tikhonov Regularization? Sure.

- Can add an ℓ_2 and/or ℓ_1 regularization terms to our objective:

 \[J(w, v) = \sum_{i=1}^{n} (y_i - f_{w,v}(x_i))^2 + \lambda_1 \| w \|^2 + \lambda_2 \| v \|^2 \]

- In neural network literature, this is often called **weight decay**.
Regularization by Early Stopping

- As we train, check performance on validation set every once in a while.
- Don’t stop immediately after validation error goes back up.
- The “patience” parameter: the number training rounds to continue after finding a minimum of validation error.
 - Start with patience $= 10000$.
 - Whenever we find a minimum at iteration T,
 - Set patience \leftarrow patience $+ cT$, for some constant c.
 - Then run at least patience extra iterations before stopping.

Max-Norm Regularization

- **Max-norm regularization**: Enforce max norm of incoming weight vector at every hidden node to be bounded:

 \[\| w \|_2 \leq c. \]

- Project any \(w \) that’s too large onto ball of radius \(c \).
- It’s like \(\ell_2 \)-complexity control, but locally at each node.
- Why?
 - There are heuristic justifications, but proof is in the performance.
 - We’ll see below.

A recent trick for improving generalization performance is **dropout**.

A fixed probability p is chosen.

Before every stochastic gradient step,
- each node is selected for “dropout” with probability p
- a dropout node is removed, along with its links
- after the stochastic gradient step, all nodes are restored.

At prediction time
- all nodes are present
- outgoing weights are multiplied by p.

Dropout probability set using a validation set, or just set at 0.5.
- Closer to 0.8 usually works better for input units.

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.
Dropout: Why might this help?

- Since any node may randomly disappear,
 - forced to “spread the knowledge” across the nodes.
- Each hidden only gets a randomly chosen sample of its inputs,
 - so won’t become too reliant on any single input.
 - More robust.
Dropout: Does it help?

<table>
<thead>
<tr>
<th>Method</th>
<th>Unit Type</th>
<th>Architecture</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Neural Net (Simard et al., 2003)</td>
<td>Logistic</td>
<td>2 layers, 800 units</td>
<td>1.60</td>
</tr>
<tr>
<td>SVM Gaussian kernel</td>
<td>NA</td>
<td>NA</td>
<td>1.40</td>
</tr>
<tr>
<td>Dropout NN</td>
<td>Logistic</td>
<td>3 layers, 1024 units</td>
<td>1.35</td>
</tr>
<tr>
<td>Dropout NN</td>
<td>ReLU</td>
<td>3 layers, 1024 units</td>
<td>1.25</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>3 layers, 1024 units</td>
<td>1.06</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>3 layers, 2048 units</td>
<td>1.04</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>2 layers, 4096 units</td>
<td>1.01</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint</td>
<td>ReLU</td>
<td>2 layers, 8192 units</td>
<td>0.95</td>
</tr>
<tr>
<td>Dropout NN + max-norm constraint (Goodfellow et al., 2013)</td>
<td>Maxout</td>
<td>2 layers, (5 x 240) units</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.
How big a network?

- How many hidden units?
- With proper regularization, too many doesn’t hurt.
 - Except in computation time.
Multiple Output Neural Networks

- Very easy to add extra outputs to neural network structure.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)
Suppose $\mathcal{X} = \{\text{Natural Images}\}$.

We have two tasks:

- Does the image have a cat?
- Does the image have a dog?

Can have one output for each task.

Seems plausible that basic pixel features would be shared by tasks.

Learn them on the same neural network – benefit both tasks.
Single Task with "Extra Tasks"

- Only one task we’re interested in.
- Gather data from related tasks.
- Train them along with the task you’re interested in.
- No related tasks? Another trick:
 - Choose any input feature.
 - Change it’s value to zero.
 - Make the prediction problem to predict the value of that feature.
 - Can help make model more robust (not depending too heavily on any single input).
Multiclass Classification

- Could make each class a separate task / output.
- Suppose we have K classes.
- Use a one-hot encoding of each $y_i \in \{1, \ldots, K\}$:

 $$y_i = (y_{i1}, \ldots, y_{ik}) \text{ with } y_{ik} = 1(y_i = k).$$

- K output scores: $f_1(x), \ldots, f_K(x)$. Each f_k is trained to predict 1 if class is k, 0 otherwise.
- Predict with $f^*(x) = \arg \max_k [f_k(x)]$.
- Old days: train each output separately, e.g. with square loss.
Multiclass Classification: Cross-Entropy Loss

- Network can do better if it “knows” that classes are mutually exclusive.
- Need to introduce a joint loss across the outputs.
- Joint loss function (cross-entropy/deviance):

\[
\ell(w, v) = - \sum_{i=1}^{n} \sum_{i=1}^{K} y_{ik} \log f_k(x_i),
\]

where \(y_{ik} = 1(y_i = k) \).
- Same loss as for multinomial logistic regression.
OverFeat: Features

- OverFeat is a neural network for image classification
 - Trained on the huge ImageNet dataset
 - Lots of computing resources into training the network.
- All those hidden layers of the network are very valuable features.
 - Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”
 - Showed that using features from OverFeat makes it easy to achieve state-of-the-art performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat
Neural Networks Benefit from Big Data

From Andrew Ng’s CS229 Deep Learning slides
Big Data Requires Big Resources

- Best results always involve GPU processing.
- Typically on huge networks.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)
Neural Networks: When and why?

Neural Networks: When to Use?

- **Computer vision problems**
 - All state of the art methods use neural networks

- **Speech recognition**
 - All state of the art methods use neural networks

- **Natural Language problems?**
 - Maybe. Check out “word2vec”
 - https://code.google.com/p/word2vec/.
 - Represents words using real-valued vectors.
 - Potentially much better than bag of words.