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Linear Least Squares Regression

Setup

Input space X = R¢

Output space Y =R

Action space Y =R

Loss: 4(9.y) =3 (y—9)?

Hypothesis space: 5= {f:R? > R|f(x)=w'x, w e R/}

Given data set D, ={(x1,y1),..., (xm yn)},
o Let's find the ERM f € 7.
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Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

Rolw) =23 (wTxi =)’

i=1

where w € R? parameterizes the hypothesis space 7.
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Unconstrained Optimization

Setting
Objective function f : RY — R is differentiable.
Want to find
x* = arg min f(x)
xERY
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N
The Gradient

Let f: RY — R be differentiable at xp € RY.
Definition

The gradient of f at the point xg, denoted V,f(xp), is the direction to
move in for the fastest increase in f(x), when starting from xg.
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Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

David Rosenberg (New York University)| DS-GA 1003 December 26, 2016 5/ 19



Gradient Descent

Gradient Descent

@ Initialize x =0

@ repeat
e x+x— mn Vf(x)
~
step size

@ until stopping criterion satisfied
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Gradient Descent Path

Gradient Descent for a nice (convex) function

4
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N
Gradient Descent - Details

Step Size
@ Empirically 1 =0.1 often works well

e Better: Optimize at every step (e.g. backtracking line search)

Stopping Rule
e Could use a maximum number of steps (e.g. 100)
e Wait until |[Vf(x)]| <e.

@ Wait until decreases in f(x) become very slow.

@ Test performance on holdout data (in learning setting)
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Gradient Descent for Linear Regression

Gradient of Objective Function:
The gradient of the objective is

n

%Z (WTXi—yl')zl

i=1

2 n
= *E (WTXi—}/i)Xi
n—=—s———
i=1 R
ith residual
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Gradient Descent: Does it scale?

@ At every iteration, we compute the gradient at current w:

n

Vi Rn(w) = 72 (WTX;—y,') X;
i:l\_\/__/
ith residual

@ We have to touch all n training points to take a single step. [O(n)]

o Will this scale to "big data?

@ Can we make progress without looking at all the data?
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N
Gradient Descent on the Risk

© Real goal is to minimize the risk (expected loss)

over a hypothesis space F.
@ Say hypothesis space F is parameterized by w € RY.
© Can we do anything with

VwEL(f(X), Y)]?
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N
Gradient Descent on the Risk

o We have
Gradient(Risk) =V, E[£(f(X), Y)]

e Switching V,, and E we can write the gradient of risk as

Gradient(Risk) =E [V, (f(X), )]

o Can we approximate this expectation?
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N
Gradient Descent on the Risk

o Let's approximate Gradient(Risk)
VwR(f) =E[V,l(f(X),Y)]
with an average over the data:

— 1 <&

VWR(f) = ;Z [Vwe(fw(xi)vyi)]
i=1

Three things to note about of V;RT:‘) as an estimator of V,, R(f):

@ Unbiased: EV,, R(f) =V, R(f).

@ Consistent: lim,_,» V,R(f) =V, R(f). (Law of large numbers.)
O It's exactly the gradient of the emprical risk VR(f).
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N
Gradient Descent on the Risk

We want Gradient(Risk)
e Estimate it using sample of size n.

o (Our standard procedure when we see an expectation.)

Bigger n — Better estimate

Bigger n = Touching more data (slower!)

@ But how big an n do we need?
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-
Gradient Descent on the Risk [approximately]

@ Gradient descent takes a bunch of steps whether we use

o the perfect step direction VR(w),
o an empirical estimate using all training data VR, (w), or

o an empirical estimate using a random subset of data VR,,(w) (m < n)

o What about m=17

@ Even with a sample of size 1, the estimate
Vo l(fw(xi), i)

is still unbiased for Gradient(Risk).
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Terminology for Gradient Descent Risk Minimization

o Gradient descent or “batch” gradient descent

o Use full data set of size n to determine step direction

e Minibatch gradient descent

o Use a random subset of size m to determine step direction
o Yoshua Bengio says':

e mis typically between 1 and few hundred
o m=32is a good default value
o With m > 10 we get computational speedup (per datum touched)

@ Stochastic gradient descent

e Minibatch with m=1.
e Use a single randomly chosen point to determine step direction.

[T

1See Yoshua Bengio's “Practical recommendations for gradient-based training of deep
architectures” http://arxiv.org/abs/1206.5533.
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N
Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size m)
e initialize w =0
@ repeat

o randomly choose m points {(x;, y;)}/~; C Dp
o wew—n[L YT Vul(fu(x) y)]

@ until stopping criteria met
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|
Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent
@ initialize w =0
@ repeat

e randomly choose training point (x;,y;) € D,
o W w— Vul(fy(xi), yi)
—

Grad(Loss on i'th example)

@ until stopping criteria met
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|
Step Size

@ Let n; be the step size at the t'th step.
@ What should should first step size be?
@ How should 1;'s decrease with each step?

Robbins-Monro Conditions
Many classical convergence results depend on the following two conditions:

o o0
Yoo Y mi=o
t=1 t=1

@ Asfast asn:; =0 (%) would satisfy this... but should be faster than

0(%)

o A useful reference for practical techniques: Leon Bottou's “Tricks':
http:
//research.microsoft.com/pubs/192769/tricks-2012.pdf
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