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Linear Least Squares Regression

Setup

Input space X= Rd

Output space Y= R
Action space Y= R
Loss: `(ŷ ,y) = 1

2 (y − ŷ)2

Hypothesis space: F =
{
f : Rd → R | f (x) = wT x , w ∈ Rd

}
Given data set Dn = {(x1,y1), . . . ,(xn,yn)},

Let’s find the ERM f̂ ∈ F.
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Linear Least Squares Regression

Objective Function: Empirical Risk
The function we want to minimize is the empirical risk:

R̂n(w) =
1
n

n∑
i=1

(
wT xi − yi

)2
,

where w ∈ Rd parameterizes the hypothesis space F.
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Unconstrained Optimization

Setting

Objective function f : Rd → R is differentiable.
Want to find

x∗ = arg min
x∈Rd

f (x)
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The Gradient

Let f : Rd → R be differentiable at x0 ∈ Rd .

Definition
The gradient of f at the point x0, denoted ∇x f (x0), is the direction to
move in for the fastest increase in f (x), when starting from x0.

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

Gradient Descent
Initialize x = 0
repeat

x ← x − η︸︷︷︸
step size

∇f (x)

until stopping criterion satisfied
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Gradient Descent Path

Gradient Descent for a nice (convex) function
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Gradient Descent - Details

Step Size
Empirically η= 0.1 often works well
Better: Optimize at every step (e.g. backtracking line search)

Stopping Rule

Could use a maximum number of steps (e.g. 100)
Wait until ‖∇f (x)‖6 ε.
Wait until decreases in f (x) become very slow.
Test performance on holdout data (in learning setting)
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Gradient Descent for Linear Regression

Gradient of Objective Function:
The gradient of the objective is

∇w R̂n(w) = ∇w

[
1
n

n∑
i=1

(
wT xi − yi

)2]

=
2
n

n∑
i=1

(
wT xi − yi

)︸ ︷︷ ︸
ith residual

xi
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Gradient Descent: Does it scale?

At every iteration, we compute the gradient at current w :

∇w R̂n(w) =
2
n

n∑
i=1

(
wT xi − yi

)︸ ︷︷ ︸
ith residual

xi

We have to touch all n training points to take a single step. [O(n)]

Will this scale to “big data”?

Can we make progress without looking at all the data?
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Gradient Descent on the Risk

1 Real goal is to minimize the risk (expected loss)

R(f ) = E [`(f (X ),Y )]

over a hypothesis space F.
2 Say hypothesis space F is parameterized by w ∈ Rd .
3 Can we do anything with

∇wE [`(f (X ),Y )]?
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Gradient Descent on the Risk

We have
Gradient(Risk)=∇wE [`(f (X ),Y )]

Switching ∇w and E we can write the gradient of risk as

Gradient(Risk)=E [∇w `(f (X ),Y )]

Can we approximate this expectation?
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Gradient Descent on the Risk

Let’s approximate Gradient(Risk)

∇wR(f ) = E [∇w `(f (X ),Y )]

with an average over the data:

∇̂wR(f ) =
1
n

n∑
i=1

[∇w `(fw (xi ),yi )]

Three things to note about of ∇̂wR(f ) as an estimator of ∇wR(f ):

1 Unbiased: E∇̂wR(f ) =∇wR(f ).

2 Consistent: limn→∞ ∇̂wR(f ) =∇wR(f ). (Law of large numbers.)
3 It’s exactly the gradient of the emprical risk ∇R̂(f ).
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Gradient Descent on the Risk

We want Gradient(Risk)
Estimate it using sample of size n.

(Our standard procedure when we see an expectation.)

Bigger n =⇒ Better estimate
Bigger n =⇒ Touching more data (slower!)
But how big an n do we need?
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Gradient Descent on the Risk [approximately]

Gradient descent takes a bunch of steps whether we use

the perfect step direction ∇R(w),

an empirical estimate using all training data ∇R̂n(w), or

an empirical estimate using a random subset of data ∇R̂m(w) (m� n)

What about m = 1?
Even with a sample of size 1, the estimate

∇w `(fw (xi ),yi )

is still unbiased for Gradient(Risk).
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Terminology for Gradient Descent Risk Minimization

Gradient descent or “batch” gradient descent
Use full data set of size n to determine step direction

Minibatch gradient descent
Use a random subset of size m to determine step direction
Yoshua Bengio says1:

m is typically between 1 and few hundred
m = 32 is a good default value
With m > 10 we get computational speedup (per datum touched)

Stochastic gradient descent
Minibatch with m = 1.
Use a single randomly chosen point to determine step direction.

1See Yoshua Bengio’s “Practical recommendations for gradient-based training of deep
architectures” http://arxiv.org/abs/1206.5533.
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Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size m)

initialize w = 0
repeat

randomly choose m points {(xi ,yi )}
m
i=1 ⊂Dn

w ← w −η
[ 1
m

∑m
i=1∇w `(fw (xi ),yi )

]
until stopping criteria met
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Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent
initialize w = 0
repeat

randomly choose training point (xi ,yi ) ∈Dn

w ← w −η ∇w `(fw (xi ),yi )︸ ︷︷ ︸
Grad(Loss on i’th example)

until stopping criteria met
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Step Size

Let ηt be the step size at the t’th step.
What should should first step size be?
How should ηt ’s decrease with each step?

Robbins-Monro Conditions
Many classical convergence results depend on the following two conditions:

∞∑
t=1

η2
t <∞ ∞∑

t=1

ηt =∞
As fast as ηt = O

(1
t

)
would satisfy this... but should be faster than

O
(

1√
t

)
.

A useful reference for practical techniques: Leon Bottou’s “Tricks”:
http:
//research.microsoft.com/pubs/192769/tricks-2012.pdf
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