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Tikhonov and Ivanov Regularization

Hypothesis Spaces

We’ve spoken vaguely about “bigger” and “smaller” hypothesis spaces
In practice, convenient to work with a nested sequence of spaces:

F1 ⊂ F2 ⊂ Fn · · · ⊂ F

Decision Trees
F = {all decision trees}
Fn = {all decision trees of depth 6 n}
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Tikhonov and Ivanov Regularization

Complexity Measures for Decision Functions

Number of variables / features
Depth of a decision tree
Degree of polynomial
A measure of smoothness:

f 7→
∫ {

f ′′(t)
}2

dt

How about for linear models?

`0 complexity: number of non-zero coefficients
`1 “lasso” complexity:

∑d
i=1 |wi |, for coefficients w1, . . . ,wd

`2 “ridge” complexity:
∑d

i=1w
2
i for coefficients w1, . . . ,wd
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Tikhonov and Ivanov Regularization

Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F
Complexity measure Ω : F→ R>0

Consider all functions in F with complexity at most r :

Fr = {f ∈ F |Ω(f )6 r }

If Ω is a norm on F, this is a ball of radius r in F.

Increasing complexities: r = 0,1.2,2.6,5.4, . . . gives nested spaces:

F0 ⊂ F1.2 ⊂ F2.6 ⊂ F5.4 ⊂ ·· · ⊂ F
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Tikhonov and Ivanov Regularization

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ R>0 and fixed r > 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Choose r using validation data or cross-validation.
Each r corresponds to a different hypothesis spaces. Could also write:

min
f∈Fr

1
n

n∑
i=1

`(f (xi ),yi )
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Tikhonov and Ivanov Regularization

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ R>0 and fixed λ> 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )+λΩ(f )

Choose λ using validation data or cross-validation.
(Ridge regression formulation in Homework #1 was of this form.)
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Tikhonov and Ivanov Regularization

Ivanov vs Tikhonov Regularization

Let L : F→ R be any performance measure of f

e.g. L(f ) could be the empirical risk of f

For many L and Ω, Ivanov and Tikhonov are “equivalent”.
What does this mean?

Any solution you could get from Ivanov, can also get from Tikhonov.
Any solution you could get from Tikhonov, can also get from Ivanov.

In practice, both approaches are effective.
Tikhonov convenient because it’s unconstrained minimization.

Proof of equivalence based on Lagrangian duality – a topic of Lecture 3.
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Tikhonov and Ivanov Regularization

Ivanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:
1 For any choice of r > 0, the Ivanov solution

f ∗r = argmin
f∈F

L(f ) s.t. Ω(f )6 r

is also a Tikhonov solution for some λ > 0. That is, ∃λ > 0 such that

f ∗r = argmin
f∈F

L(f )+λΩ(f ).

2 Conversely, for any choice of λ > 0, the Tikhonov solution:

f ∗λ = argmin
f∈F

L(f )+λΩ(f )

is also an Ivanov solution for some r > 0. That is, ∃r > 0 such that

f ∗λ = argmin
f∈F

L(f ) s.t. Ω(f )6 r
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`1 and `2 Regularization

Linear Least Squares Regression

Consider linear models

F =
{
f : Rd → R | f (x) = wT x for w ∈ Rd

}
Loss: `(ŷ ,y) = (y − ŷ)2

Training data Dn = ((x1,y1), . . . ,(xn,yn))

Linear least squares regression is ERM for ` over F:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2

Can overfit when d is large compared to n.
e.g.: d � n very common in Natural Language Processing problems
(e.g. a 1M features for 10K documents).
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`1 and `2 Regularization

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖226r

1
n

n∑
i=1

{
wT xi − yi

}2
.
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`1 and `2 Regularization

Ridge Regression: Regularization Path

β̃ is unregularized solution; β̂ is the ridge solution.
Plot from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Figure 2.1
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`1 and `2 Regularization

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

1
n

n∑
i=1

{
wT xi − yi

}2
.
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`1 and `2 Regularization

Lasso Regression: Regularization Path

β̃ is unregularized solution; β̂ is the lasso solution.
Plot from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Figure 2.1
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`1 and `2 Regularization

Ridge vs. Lasso: Regularization Paths

Plot from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Figure 2.1
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`1 and `2 Regularization

Lasso Gives Feature Sparsity: So What?

Coefficient are 0 =⇒ don’t need those features. What’s the gain?

Time/expense to compute/buy features
Memory to store features (e.g. real-time deployment)
Identifies the important features
Better prediction? sometimes
As a feature-selection step for training a slower non-linear model
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`1 and `2 Regularization

Ivanov and Tikhonov Equivalent?

For ridge regression and lasso regression,

the Ivanov and Tikhonov formulations are equivalent
[We may prove this in homework assignment 3.]

We will use whichever form is most convenient.
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`1 and `2 Regularization

The `1 and `2 Norm Constraints

For visualization, restrict to 2-dimensional input space
F = {f (x) = w1x1+w2x2} (linear hypothesis space)
Represent F by

{
(w1,w2) ∈ R2

}
.

`2 contour:
w2

1 +w2
2 = r

`1 contour:
|w1|+ |w2|= r

Where are the “sparse” solutions?
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`1 and `2 Regularization

The Famous Picture for `1 Regularization

f ∗r = argminw∈R2
1
n

∑n
i=1

(
wT xi − yi

)2 subject to |w1|+ |w2|6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.
Blue region: Area satisfying complexity constraint: |w1|+ |w2|6 r

KPM Fig. 13.3
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`1 and `2 Regularization

The Empirical Risk for Square Loss

Denote the empirical risk of f (x) = wT x by

R̂n(w) =
1
n
‖Xw − y‖2

R̂n is minimized by ŵ =
(
XTX

)−1
XT y , the OLS solution.

What does R̂n look like around ŵ?
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`1 and `2 Regularization

The Empirical Risk for Square Loss

By “completing the square”, we can show for any w ∈ Rd :

R̂n(w) =
1
n
(w − ŵ)T XTX (w − ŵ)+ R̂n(ŵ)

Set of w with R̂n(w) exceeding R̂n(ŵ) by c > 0 is{
w | R̂n(w) = c+ R̂n(ŵ)

}
=
{
w | (w − ŵ)T XTX (w − ŵ) = c

}
,

which is an ellipsoid centered at ŵ .
We’ll derive this in homework #2.
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`1 and `2 Regularization

The Famous Picture for `2 Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to w2
1 +w2

2 6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.
Blue region: Area satisfying complexity constraint: w2

1 +w2
2 6 r

KPM Fig. 13.3

David Rosenberg (New York University) DS-GA 1003 February 1, 2017 23 / 38



`1 and `2 Regularization

The Quora Picture

From Quora: “Why is L1 regularization supposed to lead to sparsity
than L2?”

Doesn’t seem like this figure represents the situation well...
But maybe sometimes it does?

Figure from https://www.quora.com/Why-is-L1-regularization-supposed-to-lead-to-sparsity-than-L2.
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Finding the Lasso Solution

How to find the Lasso solution?

How to solve the Lasso?

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖1

‖w‖1 is not differentiable!
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Finding the Lasso Solution

Splitting a Number into Positive and Negative Parts

Consider any number a ∈ R.
Let the positive part of a be

a+ = a1(a> 0).

Let the negative part of a be

a− =−a1(a6 0).

Do you see why a+ > 0 and a− > 0?
How do you write a in terms of a+ and a−?
How do you write |a| in terms of a+ and a−?
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Finding the Lasso Solution

How to find the Lasso solution?

The Lasso problem

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖1

Replace each wi by w+
i −w−

i .
Write w+ =

(
w+

1 , . . . ,w+
d

)
and w− =

(
w−

1 , . . . ,w−
d

)
.
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Finding the Lasso Solution

The Lasso as a Quadratic Program

Substituting w = w+−w− and |w |= w++w−, Lasso problem is:

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Objective is differentiable (in fact, convex and quadratic)
2d variables vs d variables
2d constraints vs no constraints
A “quadratic program”: a convex quadratic objective with linear
constraints.

Could plug this into a generic QP solver.
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Finding the Lasso Solution

Projected SGD

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i ,

where 1 represents a column vector of 1’s in Rd .

Solution:

Take a stochastic gradient step
“Project” w+ and w− into the constraint set

In other words, any component of w+ or w− is negative, make it 0 .
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Finding the Lasso Solution

Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . . ,wd) over w = (w1, . . . ,wd) ∈ Rd .
In gradient descent or SGD,

each step potentially changes all entries of w .

In each step of coordinate descent,
we adjust only a single wi .

In each step, solve

wnew
i = argmin

wi

L(w1, . . . ,wi−1,wi,wi+1, . . . ,wd)

Solving this argmin may itself be an iterative process.

Coordinate descent is great when

it’s easy or easier to minimize w.r.t. one coordinate at a time
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Finding the Lasso Solution

Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . .wd) over w = (w1, . . . ,wd) ∈ Rd .
Initialize w (0) = 0
while not converged:

Choose a coordinate j ∈ {1, . . . ,d}
wnew
j ← argminwj

L(w
(t)
1 , . . . ,w

(t)
j−1,wj,w

(t)
j+1, . . . ,w

(t)
d )

w (t+1)← w (t)

w
(t+1)
j ← wnew

j
t← t+1

Random coordinate choice =⇒ stochastic coordinate descent
Cyclic coordinate choice =⇒ cyclic coordinate descent
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Finding the Lasso Solution

Coordinate Descent Method for Lasso

Why mention coordinate descent for Lasso?
In Lasso, the coordinate minimization has a closed form solution!
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Finding the Lasso Solution

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

ŵj = argmin
wj∈R

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Then

ŵj(cj) =


(cj +λ)/aj if cj <−λ

0 if cj ∈ [−λ,λ]

(cj −λ)/aj if cj > λ

aj = 2
n∑

i=1

x2
i ,j cj = 2

n∑
i=1

xi ,j(yi −wT
−jxi ,−j)

where w−j is w without component j and similarly for xi ,−j .
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Finding the Lasso Solution

Coordinate Descent: When does it work?

Suppose we’re minimizing f : Rd → R.
Sufficient conditions:

1 f is continuously differentiable and
2 f is strictly convex in each coordinate

But lasso objective

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖1

is not differentiable...
Luckily there are weaker conditions...
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Finding the Lasso Solution

Coordinate Descent: The Separability Condition

Theorem
aIf the objective f has the following structure

f (w1, . . . ,wd) = g(w1, . . . ,gd)+
d∑

j=1

hj(xj),

where

g : Rd → R is differentiable and convex, and
each hj : R→ R is convex (but not necessarily differentiable)

then the coordinate descent algorithm converges to the global minimum.
aTseng 1988: “Coordinate ascent for maximizing nondifferentiable concave

functions”, Technical Report LIDS-P
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Finding the Lasso Solution

Coordinate Descent Method – Variation

Suppose there’s no closed form? (e.g. logistic regression)
Do we really need to fully solve each inner minimization problem?
A single projected gradient step is enough for `1 regularization!

Shalev-Shwartz & Tewari’s “Stochastic Methods...” (2011)
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Finding the Lasso Solution

Stochastic Coordinate Descent for Lasso – Variation

Let w̃ = (w+,w−) ∈ R2d and

L(w̃) =

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ

(
w++w−

)

Stochastic Coordinate Descent for Lasso - Variation

Goal: Minimize L(w̃) s.t. w+
i ,w−

i > 0 for all i .
Initialize w̃ (0) = 0

while not converged:

Randomly choose a coordinate j ∈ {1, . . . ,2d}
w̃j ← w̃j +max

{
−w̃j ,−∇jL(w̃)

}
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