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Regression Trees

General Tree Structure

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Regression Trees

Decision Tree

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Regression Trees

Binary Decision Tree on R2

Consider a binary tree on {(X1,X2) | X1,X2 ∈ R}

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Fitting a Regression Tree

The decision tree gives the partition of X into regions:

{R1, . . . ,RM } .

Recall that a partition is a disjoint union, that is:

X= R1∪R2∪·· ·∪RM

and
Ri ∩Rj = ∅ ∀i 6= j
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Regression Trees

Fitting a Regression Tree

Given the partition {R1, . . . ,RM }, final prediction is

f (x) =
M∑

m=1

cm1(x ∈ Rm)

How to choose c1, . . . ,cM?
For loss function `(ŷ ,y) = (ŷ − y)2, best is

ĉm = ave(yi | xi ∈ Rm).
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Regression Trees

Complexity of a Tree

Let |T |=M denote the number of terminal nodes in T .
We will use |T | to measure the complexity of a tree.
For any given complexity,

we want the tree minimizing square error on training set.

Finding the optimal binary tree of a given complexity is
computationally intractable.
We proceed with a greedy algorithm

Means build the tree one node at a time, without any planning ahead.

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 9 / 26



Regression Trees

Root Node, Continuous Variables

Let x = (x1, . . . ,xd) ∈ Rd .
Splitting variable j ∈ {1, . . . ,d}.
Split point s ∈ R.
Partition based on j and s:

R1(j ,s) = {x | xj 6 s}

R2(j ,s) = {x | xj > s}
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Regression Trees

Root Node, Continuous Variables

For each splitting variable j and split point s,

ĉ1(j ,s) = ave(yi | xi ∈ R1(j ,s))

ĉ2(j ,s) = ave(yi | xi ∈ R2(j ,s))

Find j ,s minimizing∑
i :xi∈R1(j ,s)

(yi − ĉ1(j ,s))
2+

∑
i :xi∈R2(j ,s)

(yi − ĉ2(j ,s))
2

How?
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Regression Trees

Then Proceed Recursively

1 We have determined R1 and R2

2 Find best split for points in R1

3 Find best split for points in R2

4 Continue...

When do we stop?
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Regression Trees

Complexity Control Strategy

If the tree is too big, we may overfit.
If too small, we may miss patterns in the data (underfit).
Typical approach:

1 Build a really big tree (e.g. until all regions have 6 5 points).
2 Prune the tree.
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Regression Trees

Tree Terminology

Each internal node
has a splitting variable and a split point
corresponds to binary partition of the space

A terminal node or leaf node
corresponds to a region
corresponds to a particular prediction

A subtree T ⊂ T0 is any tree obtained by pruning T0, which means
collapsing any number of its internal nodes.
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Regression Trees

Tree Pruning

Full Tree T0

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Tree Pruning

Subtree T ⊂ T0

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Regression Trees

Emprical Risk and Tree Complexity

Suppose we want to prune a big tree T0.

Let R̂(T ) be the empirical risk of T (i.e. square error on training)

Clearly, for any T ⊂ T0, R̂(T )> R̂(T0).

Let |T | be the number of terminal nodes in T .
|T | is our measure of complexity for a tree.
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Regression Trees

Cost Complexity (or Weakest Link) Pruning

Definitions
The cost complexity criterion with parameter α is

Cα(T ) = R̂(T )+α |T |

Trades off between empirical risk and complexity of tree.

Cost complexity pruning:

For each α, find the tree T ⊂ T0 minimizing Cα(T ).
Use cross validation to find the right choice of α.

Cα(T ) has familiar regularized ERM form, but

Cannot take the gradient w.r.t. T .
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Regression Trees

Greedy Pruning is Sufficient

Find subtree T1 ⊂ T0 that minimizes R̂(T1)− R̂(T0).
Then find T2 ⊂ T1.
Repeat until we have just a single node.
If N is the number of nodes of T0 (terminal and internal nodes), then
we end up with a set of trees:

T =
{
T0 ⊃ T1 ⊃ T2 ⊃ ·· · ⊃ T|N|

}
Breiman et al. (1984) proved that this is all you need. That is:{

argmin
T⊂T0

Cα(T ) | α> 0

}
⊂ T
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Regression Trees

Regularization Path for Trees

SPAM dataset: Blue curve is cross-validation estimate of misclassification
rate as a function of tree size. Orange curve is test error. The
cross-validation is indexed by values of α, shown above. The tree sizes
shown below refer to |Tα|, the size of the original tree indexed by α.

HTF Figure 9.4
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Trees in General

Missing Features (or “Predictors”)

Features are also called covariates or predictors.
What to do about missing features?

Throw out inputs with missing features
Impute missing values with feature means
If a categorical feature, let “missing” be a new category.

For trees, can use surrogate splits
For every internal node, form a list of surrogate features and split points
Goal is to approximate the original split as well as possible
Surrogates ordered by how well they approximate the original split.
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Trees in General

Trees vs Linear Models

Trees have to work much harder to capture linear relations.
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the
authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Trees in General

Interpretability

Trees are certainly easy to explain.
You can show a tree on a slide.
Small trees seem interpretable.
For large trees, maybe not so easy.
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Trees in General

Trees for Nonlinear Feature Discovery

Suppose tree T gives partition R1, . . . ,Rm.
Predictions are

f (x) =
M∑

m=1

cm1(x ∈ Rm)

If we make a feature for every region R :

1(x ∈ R),

we can view this as a linear model.
Trees can be used to discover nonlinear features.
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Trees in General

Comments about Trees

Trees make no use of geometry
No inner products or distances
called a “nonmetric” method
Feature scale irrelevant

Predictions are not continuous

not so bad for classification
may not be desirable for regression
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