Classification and Regression Trees

David Rosenberg

New York University

October 29, 2016
Regression Trees
Regression Trees

General Tree Structure

A general tree structure

Internal (split) node

Root node

Terminal (leaf) node

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
Decision Tree

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
Consider a binary tree on \(\{(X_1, X_2) \mid X_1, X_2 \in \mathbb{R}\} \)

![Binary Decision Tree on \(\mathbb{R}^2 \)](image-url)
Consider a binary tree on \(\{(X_1, X_2) \mid X_1, X_2 \in \mathbb{R}\} \).
Fitting a Regression Tree

- The decision tree gives the partition of \mathcal{X} into regions:
 \[\{ R_1, \ldots, R_M \} . \]

- Recall that a partition is a **disjoint union**, that is:
 \[\mathcal{X} = R_1 \cup R_2 \cup \cdots \cup R_M \]

and
 \[R_i \cap R_j = \emptyset \quad \forall i \neq j \]
Fitting a Regression Tree

- Given the partition \(\{R_1, \ldots, R_M\} \), final prediction is
 \[
 f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)
 \]

- How to choose \(c_1, \ldots, c_M \)?
- For loss function \(\ell(\hat{y}, y) = (\hat{y} - y)^2 \), best is
 \[
 \hat{c}_m = \text{ave}(y_i \mid x_i \in R_m).
 \]
Complexity of a Tree

- Let $|T| = M$ denote the number of terminal nodes in T.
- We will use $|T|$ to measure the complexity of a tree.
- For any given complexity,
 - we want the tree minimizing square error on training set.
- Finding the optimal binary tree of a given complexity is computationally intractable.
- We proceed with a **greedy algorithm**
 - Means build the tree one node at a time, without any planning ahead.
Let \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \).

Splitting variable \(j \in \{1, \ldots, d\} \).

Split point \(s \in \mathbb{R} \).

Partition based on \(j \) and \(s \):

\[
R_1(j, s) = \{ x \mid x_j \leq s \}
\]

\[
R_2(j, s) = \{ x \mid x_j > s \}
\]
Regression Trees

Root Node, Continuous Variables

For each splitting variable j and split point s,

$$
\hat{c}_1(j, s) = \text{ave}(y_i \mid x_i \in R_1(j, s))
$$
$$
\hat{c}_2(j, s) = \text{ave}(y_i \mid x_i \in R_2(j, s))
$$

Find j, s minimizing

$$
\sum_{i : x_i \in R_1(j, s)} (y_i - \hat{c}_1(j, s))^2 + \sum_{i : x_i \in R_2(j, s)} (y_i - \hat{c}_2(j, s))^2
$$

How?
Then Proceed Recursively

1. We have determined R_1 and R_2
2. Find best split for points in R_1
3. Find best split for points in R_2
4. Continue...

- When do we stop?
If the tree is too big, we may overfit.
If too small, we may miss patterns in the data (underfit).

Typical approach:
1. Build a really big tree (e.g. until all regions have \(\leq 5 \) points).
2. Prune the tree.
Tree Terminology

- Each **internal node**
 - has a splitting variable and a split point
 - corresponds to binary partition of the space

- A **terminal node** or **leaf node**
 - corresponds to a region
 - corresponds to a particular prediction

- A **subtree** $T \subseteq T_0$ is any tree obtained by **pruning** T_0, which means collapsing any number of its internal nodes.
Tree Pruning

- Full Tree T_0

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Tree Pruning

- Subtree $T \subset T_0$

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Suppose we want to prune a big tree T_0.

Let $\hat{R}(T)$ be the empirical risk of T (i.e. square error on training).

Clearly, for any $T \subset T_0$, $\hat{R}(T) \geq \hat{R}(T_0)$.

Let $|T|$ be the number of terminal nodes in T.

$|T|$ is our measure of complexity for a tree.
Cost Complexity (or Weakest Link) Pruning

Definitions

The **cost complexity criterion** with parameter α is

$$C_\alpha(T) = \hat{R}(T) + \alpha |T|$$

- Trades off between empirical risk and complexity of tree.
- **Cost complexity pruning:**
 - For each α, find the tree $T \subset T_0$ minimizing $C_\alpha(T)$.
 - Use cross validation to find the right choice of α.
- $C_\alpha(T)$ has familiar regularized ERM form, but
 - Cannot take the gradient w.r.t. T.

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 18 / 26
Greedy Pruning is Sufficient

- Find subtree $T_1 \subset T_0$ that minimizes $\hat{R}(T_1) - \hat{R}(T_0)$.
- Then find $T_2 \subset T_1$.
- Repeat until we have just a single node.
- If N is the number of nodes of T_0 (terminal and internal nodes), then we end up with a set of trees:

$$\mathcal{T} = \{ T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_{|N|} \}$$

- Breiman et al. (1984) proved that this is all you need. That is:

$$\left\{ \arg \min_{T \subset T_0} C_\alpha(T) \mid \alpha \geq 0 \right\} \subset \mathcal{T}$$
Regularization Path for Trees

SPAM dataset: Blue curve is cross-validation estimate of misclassification rate as a function of tree size. Orange curve is test error. The cross-validation is indexed by values of α, shown above. The tree sizes shown below refer to $|T_\alpha|$, the size of the original tree indexed by α.

HTF Figure 9.4
Trees in General
Features are also called covariates or predictors.

What to do about missing features?

- Throw out inputs with missing features
- Impute missing values with feature means
- If a categorical feature, let “missing” be a new category.

For trees, can use surrogate splits

- For every internal node, form a list of surrogate features and split points
- Goal is to approximate the original split as well as possible
- Surrogates ordered by how well they approximate the original split.
Trees vs Linear Models

- Trees have to work much harder to capture linear relations.

From *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
Interpretability

- Trees are certainly easy to explain.
- You can show a tree on a slide.
- Small trees seem interpretable.
- For large trees, maybe not so easy.
Trees for Nonlinear Feature Discovery

- Suppose tree T gives partition R_1, \ldots, R_m.
- Predictions are
 \[f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m) \]
- If we make a feature for every region R:
 \[1(x \in R) \]
- we can view this as a **linear model**.
- Trees can be used to discover nonlinear features.
Comments about Trees

- Trees make no use of \textit{geometry}
 - No inner products or distances
 - called a “nonmetric” method
 - \textbf{Feature scale irrelevant}

- Predictions are not continuous
 - not so bad for classification
 - may not be desirable for regression