Gradient Boosting

David Rosenberg

New York University

October 29, 2016
Review: AdaBoost and FSAM
AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- each G_m is a **weak classifier**
- The G_m’s are like basis functions, but they are learned from the data.
- Let’s move beyond classification models...
Adaptive Basis Function Model

- **Base hypothesis space** \mathcal{F}
 - the “weak classifiers” in boosting context

- **An adaptive basis function expansion** over \mathcal{F} is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- $h_m \in \mathcal{F}$ chosen in a learning process (“adaptive”)
- $\nu_m \in \mathbb{R}$ are **expansion coefficients**.

- **Note:** We are taking linear combination of outputs of $h_m(x)$.
 - Functions in $h_m \in \mathcal{F}$ must produce values in \mathbb{R} (or a vector space)
How to fit an adaptive basis function model?

- **Loss function:** $\ell(y, \hat{y})$
- **Base hypothesis space:** F of real-valued functions
- Want to find
 \[
 f(x) = \sum_{m=1}^{M} \nu_m h_m(x)
 \]
 that **minimizes empirical risk**
 \[
 \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)).
 \]
- We’ll proceed in stages, adding a new h_m in every stage.
Forward Stagewise Additive Modeling (FSAM)

- Start with $f_0 = 0$.
- After $m-1$ stages, we have
 \[f_{m-1} = \sum_{i=1}^{m-1} \nu_i h_i, \]
 where $h_1, \ldots, h_{m-1} \in \mathcal{F}$.

- Want to find
 - step direction $h_m \in \mathcal{F}$ and
 - step size $\nu_m > 0$

- So that
 \[f_m = f_{m-1} + \nu_m h_m \]
 minimizes empirical risk.
Forward Stagewise Additive Modeling

1. Initialize $f_0(x) = 0$.
2. For $m = 1$ to M:
 1. Compute:
 $$ (\nu_m, h_m) = \arg \min_{\nu \in \mathbb{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \ell \left(y_i, f_{m-1}(x_i) + \nu h(x_i) \right) $$
 2. Set $f_m = f_{m-1} + \nu_m h$.
Example 1: Exponential Loss & Classifiers (AdaBoost)

- Loss function: $\ell(y, f(x)) = \exp(-yf(x))$.
- Base hypothesis space: $\mathcal{F} = \{h(x): \mathcal{X} \rightarrow \{-1, 1\}\}$ (weak classifiers)
- Then Forward Stagewise Additive Modeling (FSAM) reduces to an instance of AdaBoost.
 - (See HTF Section 10.4 for proof.)
Example 2: Square Loss & Regression (L_2-Boosting)

- Loss function: $\ell(y, f(x)) = (y - f(x))^2$
- Base hypothesis space: $\mathcal{F} = \{h(x) : \mathcal{X} \rightarrow \mathbb{R}\}$ (real-valued functions)
- Key step is

$$\min_{\nu \in \mathbb{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) + \nu h(x_i) \right] \right)^2$$

$$= \min_{\nu \in \mathbb{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \left(y_i - f_{m-1}(x_i) - \nu h(x_i) \right)^2$$
Example 2: Square Loss & Regression (L_2-Boosting)

- Simplifying assumption: \mathcal{F} is closed under scalar multiplication:
 - If $h \in \mathcal{F}$ then $ch \in \mathcal{F}$ for all $c \in \mathbb{R}$.
- Then step size is absorbed into \mathcal{F} we can just compute

\[
\min_{h \in \mathcal{F}} \sum_{i=1}^{n} \left(y_i - f_{m-1}(x_i) - h(x_i) \right)^2
\]

- This is square-loss regression on $(x_1, r_1), \ldots, (x_n, r_n)$, where

\[
r_i = y_i - f_{m-1}(x_i).
\]

- [Not linear regression unless \mathcal{F} comprises linear functions.]
- This is called L_2-Boosting.
FSAM: More Examples?

- The challenge with FSAM is solving

 \[
 \min_{\nu \in \mathbb{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \ell \left(y_i, f_{m-1}(x_i) + \nu h(x_i) \right).
 \]

- Possibilities so far:
 - reduce it to weighted classification (e.g. AdaBoost)
 - reduce it to regression (e.g. L_2-Boosting).

- But finding minimizer is not always easy for arbitrary
 - loss function and
 - base hypothesis space
Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \ldots, w_d)$ over $w = (w_1, \ldots, w_d) \in \mathbb{R}^d$.

- Initialize $w^{(0)} = 0$
- while not converged:
 - Choose a coordinate $j \in \{1, \ldots, d\}$
 - $w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \ldots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \ldots, w_d^{(t)})$
 - $w^{(t+1)} \leftarrow w^{(t)}$
 - $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$
 - $t \leftarrow t + 1$
Suppose $\mathcal{F} = \{h_1, \ldots, h_N\}$.

Then $f_m = w_1 h_1 + \cdots + w_N h_N$.

Represent f_m by parameter vector $w^{(m)} = (w_1, \ldots, w_N)$.

Start with $w^{(0)} = 0$.

After $m-1$ stages, we have $w^{(m-1)} = (w_1, \ldots, w_N)$.

Suppose mth step chooses

- $h_m = h_j \in \mathcal{F}$ and $\nu_m \in \mathbb{R}$.

Then $w^{(m)} = (w_1, \ldots, w_{j-1}, w_j + \nu_m, w_{j+1}, \ldots, w_N)$
Gradient Boosting / “Anyboost”
Gradient Boosting / “Anyboost”

FSAM Looks Like Iterative Optimization

- The FSAM step

\[(\nu_m, h_m) = \arg \min_{\nu \in \mathbb{R}, h \in \mathcal{F}} \sum_{i=1}^{n} \ell \left(y_i, f_{m-1}(x_i) + \nu h(x_i) \right) \]

- Hard part: finding the **best step direction** \(h\).
- What if we looked for the **locally best** step direction?
 - like in gradient descent

- Approach:
 - Choose \(h_m\) to be something like a gradient in function space.
 - Roughly speaking, it will be the functional gradient projected onto \(\mathcal{F}\).
Functional Gradient Descent: Main Idea

- We want to minimize

\[\sum_{i=1}^{n} \ell(y_i, f(x_i)). \]

- Take functional gradient w.r.t. \(f \).
- Find function \(h \in \mathcal{F} \) closest to gradient.
- Take a step in this “projected gradient” direction \(h \).
“Functional” Gradient Descent

- We want to minimize
 \[\sum_{i=1}^{n} \ell (y_i, f(x_i)). \]
- Only depends on \(f \) at the \(n \) training points.
- Define
 \[f = (f(x_1), \ldots, f(x_n))^T \]
 and write the objective function as
 \[J(f) = \sum_{i=1}^{n} \ell (y_i, f_i). \]
Consider gradient descent on

\[J(f) = \sum_{i=1}^{n} \ell(y_i, f_i). \]

The negative gradient step direction at \(f \) is

\[-g = -\nabla_f J(f), \]

which we can easily calculate.
Functional Gradient Descent: Projection Step

- Unconstrained step direction is
 \[-g = -\nabla_f J(f).\]

- Suppose \(F \) is our weak hypothesis space.
- Find \(h \in F \) that is closest to \(-g\) at the training points, in the \(\ell^2 \) sense:
 \[
 \min_{h \in F} \sum_{i=1}^{n} (-g_i - h(x_i))^2.
 \]

- This is a least squares regression problem.
- \(F \) should have real-valued functions.
- So the \(h \) that best approximates \(-g\) is our step direction.
Finally, we choose a stepsize.

Option 1 (Line search):

\[
\nu_m = \arg \min_{\nu > 0} \sum_{i=1}^{n} \ell \{ y_i, f_{m-1}(x_i) + \nu h_m(x_i) \}.
\]

Option 2: (Shrinkage parameter)

- We consider \(\nu = 1 \) to be the full gradient step.
- Choose a fixed \(\nu \in (0, 1) \) – called a **shrinkage parameter**.
- A value of \(\nu = 0.1 \) is typical – optimize as a hyperparameter.
The Gradient Boosting Machine

1. Initialize $f_0(x) = 0$.

2. For $m = 1$ to M:

 1. Compute the “pseudo-residuals”:

 $$ g_m = \left(\frac{\partial}{\partial f(x_i)} \left(\sum_{i=1}^{n} \ell \{ y_i, f(x_i) \} \right) \bigg|_{f(x_i) = f_{m-1}(x_i)} \right)_{i=1}^{n} $$

 2. Fit regression model to $-g_m$:

 $$ h_m = \arg \min_{h \in \mathcal{F}} \sum_{i=1}^{n} (-(g_m)_i - h(x_i))^2. $$

 3. Choose fixed step size $\nu_m = \nu \in (0, 1]$, or take

 $$ \nu_m = \arg \min_{\nu > 0} \sum_{i=1}^{n} \ell \{ y_i, f_{m-1}(x_i) + \nu h_m(x_i) \}. $$

 4. Take the step:

 $$ f_m(x) = f_{m-1}(x) + \nu_m h_m(x) $$
The Gradient Boosting Machine: Recap

- Take any [sub]differentiable loss function.
- Choose a base hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!